首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
While intra‐population variability in resource use is ubiquitous, little is known of how this measure of niche diversity varies in space and its role in population dynamics. Here we examined how heterogeneous breeding environments can structure intra‐population niche variation in both resource use and reproductive output. We investigated intra‐population niche variation in the Arctic tundra ecosystem, studying peregrine falcon (Falco peregrinus tundrius, White) breeding within a terrestrial‐marine gradient near Rankin Inlet, Nunavut, Canada. Using stable isotope analysis, we found that intra‐population niches varied at the individual level; we examined within‐nest and among‐nest variation, though only the latter varied along the terrestrial‐marine gradient (i.e., increased among‐nest variability among birds nesting within the marine environment, indicating higher degree of specialization). Terrestrial prey species (small herbivores and insectivores) were consumed by virtually all falcons. Falcons nesting within the marine environment made use of marine prey (sea birds), but depended heavily on terrestrial prey (up to 90% of the diet). Using 28‐years of peregrine falcon nesting data, we found a positive relationship between the proportion of terrestrial habitat surrounding nest sites and annual nestling production, but no relationship with the likelihood of successfully rearing at least one nestling reaching 25 days old. Annually, successful inland breeders raised 0.47 more young on average compared to offshore breeders, which yields potential fitness consequences for this long‐living species. The analyses of niche and reproductive success suggest a potential breeding cost for accessing distant terrestrial prey, perhaps due to additional traveling costs, for those individuals with marine nest site locations. Our study indicates how landscape heterogeneity can generate proximate (niche variation) and ultimate (reproduction) consequences on a population of generalist predator. We also show that within‐individual and among‐individual variation are not mutually exclusive, but can simultaneously arise and structure intra‐population niche variation.  相似文献   

2.
The density and productivity of peregrine falcon Falco peregri nus populations correlate positively with distance from the Equator, while habitat specificity increases with proximity to the Equator. Low peregrine densities in the tropics may he a result of competition with similar conveners (e.g. the lanner falcon F. biarmicus in Africa), which replace them in many areas. Alternatively, tropical peregrines may he limited by resource deficiencies that do not affect their close relatives. Data from peregrine and lanner populations in South Africa support the resource deficiency hypothesis, and there is no evidence to suggest direct competition between the two species. In areas where prey are not spatially or temporally concentrated, or otherwise particularly vulnerable to attack, morphological and behavioural specializations of peregrines probably restrict them to optimal foraging conditions. The relative dynamics of.Arctic and temperate vs tropical prey populations is suggested as an important factor determining peregrine distribution globally. Populations of other widespread hut particularly specialized avian predators (e.g. osprey Pandion haliaetus) may he similarly controlled. Food limitation (in terms of a dearth of particularly vulnerable prey) in the tropics has resulted in specialization and rarity in peregrines and generalization and relative abundance in similar congeners.  相似文献   

3.
In long‐lived species, population growth rate is highly sensitive to changes in adult survival. Despite the growing concerns regarding recent climate changes, few studies have investigated the effect of climatic conditions on survival in long‐lived wildlife that are either resident or breed in the Arctic. In this study, we evaluated the effect of climate across the annual life cycle (breeding, outward migration, wintering, and inward migration) on apparent annual survival of arctic‐breeding peregrine falcons. From 1982 to 2008, peregrine falcons breeding near Rankin Inlet, Nunavut, Canada were monitored, in part, to assess apparent annual survival (the product of true survival and site fidelity) using re‐observations of marked individuals. Our study indicated that apparent annual survival of adult peregrine falcons was correlated with indices of climatic conditions during outward migration (i.e., flight from the Arctic breeding grounds). These climatic indices (fall NAO of the current year and fall NAO with a lag of one year) explained 35% of the temporal variation in apparent annual survival of peregrine falcons. Our results suggest that this top‐predator is vulnerable to weather‐related environmental conditions encountered during fall migration.  相似文献   

4.
Some wild populations of fish-eating birds and raptors are exposed to high concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds such as other 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and coplanar polychlorinated biphenyls, resulting in accumulation in their tissues. It has been demonstrated that TCDD-like chemicals cause toxic effects via aryl hydrocarbon receptor (AHR)-mediated signaling pathways. The aim of this study was to characterize the AHR from the peregrine falcon (Falco peregrines) to predict its sensitivity to TCDD-like chemicals. The AHR1, AHR2, and AHR nuclear translocator 1 of the peregrine falcon are more similar in amino acid sequence to avian species less sensitive to TCDD-like chemicals such as the cormorant (95%) than to more sensitive species such as the chicken (90%). From the amino acid sequence, it is likely that the ligand-binding affinity of peregrine falcon AHR1 and AHR2 would be very low compared with the chicken or other sensitive species, and it was actually proved by an in vitro reporter gene assay. We concluded that the peregrine falcon, one of raptor species, may be relatively resistant to TCDD-like chemicals.  相似文献   

5.
In this paper, we describe and analyze the diet of peregrine falcons during a long-term period (1982–2002). A combination of direct observations of prey brought to nests, prey remains, and regurgitated pellets were used to calculate diet diversity and dietary overlap between peregrine pairs. We also examined diet diversity in relation to breeding performance. All peregrine pairs fed mainly on birds, with pigeons the most common prey. An increase in pigeon availability has been associated with both an increase in population size and an increase in breeding performance (measured as the average productivity of pairs per year) of a small peregrine falcon population in eastern Spain. Average productivity was lower when dietary breadth was higher. We speculate that our results were the synergistic effect of declining persecution and increased pigeon availability through increased popularity of keeping racing pigeons. There is a conflict of interests between pigeon fanciers and peregrine conservation. As a consequence, this could result to an increased risk of mortality by direct persecution. In accordance with this, conservation measures aimed at preventing direct persecution are encouraged.  相似文献   

6.
We examined the efficacy of noninvasive monitoring of endocrine function via fecal steroid immunoassays in the golden eagle and peregrine falcon. High-pressure liquid chromatography analyses of fecal glucocorticoid metabolites (fGCM) revealed that minor percentages of immunoreactive fGCM co-eluted with [3H]corticosterone in both sexes of the eagle (2.5–2.7%) and falcon (7.5–11.9%). In contrast, most fecal estrogen metabolites in eagle and falcon females co-eluted with radiolabeled estradiol-17β ([3H]; 57.6, 64.6%, respectively) or estrone ([3H]; 26.9, 4.1%, respectively). Most fecal progestin metabolite immunoreactivity in the female eagle (24.8%) and falcon (21.7%) co-eluted with progesterone ([14C]). Most fecal androgen metabolite immunoreactivity in eagle (55.8%) and falcon (63.7%) males co-eluted with testosterone ([14C]). Exogenous adrenocorticotropin hormone induced increased fGCM excretion above pre-treatment in both species, but only significantly (P < 0.05) in the eagle. Both species showed increased fGCM after saline administration, suggesting the detection of ‘handling stress.’ Both species exhibited enterohepatic and renal recirculation of administered steroids as demonstrated by biphasic and triphasic excretion patterns. Thus, noninvasive fecal hormone monitoring is a valid and promising tool for assessing gonadal and adrenal status in rare and threatened birds-of-prey.  相似文献   

7.
Adults of the predatory fly Coenosia attenuata Stein (Diptera: Muscidae) catch their prey while in flight. I investigated this activity over two seasons in a tomato greenhouse naturally infested with Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). The flight of C. attenuata individuals was affected by environmental factors and was increased in response to increases in temperature, the number of prey flights, and conspecific density. Predator and prey flights were distributed throughout the day, but there was a regular daily trend, each with two partially overlapping activity peaks. The possibility of predation was limited by differences in daily flight‐activity times. Predatory flights comprised a small percentage (ca. 6%) of the total flights, with a predation success rate of 61%. Overall, the predatory activity of C. attenuata depended on the selection of hunting sites with good visibility to ensure a clear view before take‐off and allow the capture of prey in flight. Similar numbers of overall flights were made by both sexes, but C. attenuata females performed more predation flights and territorial defense activities than males. The ecological role of C. attenuata and its limited adaptability to greenhouses is discussed in light of its possible use in biological control of whiteflies.  相似文献   

8.
Predator versus prey: on aerial hunting and escape strategies in birds   总被引:5,自引:0,他引:5  
Predator and prey attack-escape performance is likely to bethe outcome of an evolutionary arms race. Predatory birds aretypically larger than their prey, suggesting different flightperformances. We analyze three idealized attack-escape situationsbetween predatory and prey birds: climbing flight escape, horizontalspeeding, and turning and escape by diving. Generally a smallerbird will outclimb a larger predator and hence outclimbing shouldbe a common escape strategy. However, some predators such asthe Eleonora's falcon (Falco elenorae) has a very high rateof climb for its size. Prey species with an equal or highercapacity to climb fast, such as the swift Apus apus, usuallyadopt climbing escape when attacked by Eleonora's falcons.To analyze the outcome of the turning gambit between predatorand prey we use a Howland diagram, where the relative lineartop speeds and minimum turning radii of prey and predator definethe escape and danger zones. Applied to the Eleonora's falconand some potential prey species, this analysis indicates thatthe falcon usually wins against the example prey species; thatis, the prey will be captured. Level maneuvering hunting isthe most common strategy seen in Eleonora's falcons. To avoidcapture via use of this strategy by a predator, the prey shouldbe able to initiate tight turns at high linear speed, whichis facilitated by a low wing loading (weight per unit of wingarea). High diving speed is favored by large size. If close enough to safe cover, a prey might still opt for a verticaldive to escape in spite of lower terminal diving speed thanthat of the predator. On the basis of aerodynamic considerationswe discuss escape flight strategies in birds in relation tomorphological adaptations.  相似文献   

9.
The present study was aimed at testing a novel idea, that rather than maximizing their distance from a predator during close-distance encounters, prey species are better off moving directly or diagonally toward the predator in order to increase the relative speed and confine the attack to a single available clashing point. We used two tamed barn owls Tyto alba to measure the rate of attack success in relation to the direction of prey movement. A dead mouse or chick was used to simulate the prey, pulled to various directions by means of a transparent string during the owl's attack. Both owls showed a high success rate in catching stationary compared with moving food items (90% and 21%, respectively). Success was higher when the prey moved directly away, rather than towards the owls (50% and 18%, respectively). Strikingly, these owls had 0% success in catching food items that were pulled sideways. This failure to catch prey that move sideways may reflect constraints in postural head movements in aerial raptors that cannot move the eyes but rather move the entire head in tracking prey. So far there is no evidence that defensive behavior in terrestrial prey species takes advantage of the above escape directions to lower rates of predator success. However, birds seem to adjust their defensive tactics in the vertical domain by taking-off at a steep angle, thus moving diagonally toward the direction of an approaching aerial predator. These preliminary findings warrant further studies in barn owls and other predators, in both field and laboratory settings, to uncover fine predator head movements during hunting, the corresponding defensive behavior of the prey, and the adaptive significance of these behaviors.  相似文献   

10.
Understanding the effects of male and female age on reproductive success is vital to explain the evolution of life history traits and sex‐specific aging. A general prediction is that pre‐/postmeiotic aging processes will lead to a decline in the pre‐ and postcopulatory abilities of both males and females. However, in as much the sexes have different strategies to optimize their fitness, the decline of reproductive success late in life can be modulated by social context, such as sex ratio, in a sex‐specific manner. In this study, we used Drosophila melanogaster to investigate whether sex ratio at mating modulates age effects on male and female reproductive success. As expected, male and female age caused a decrease in reproductive success across male‐biased and female‐biased social contexts but, contrary to previous findings, social context did not modulate age‐related fitness decline in either of the two sexes. We discuss these results in the light of how sex ratio might modulate pre‐/postcopulatory abilities and the opportunity for inter‐ and intrasexual competition in D. melanogaster, and generally suggest that social context effects on these processes are likely to be species specific.  相似文献   

11.
Piscivorous birds frequently display sex‐specific differences in their hunting and feeding behavior, which lead to diverging impacts on prey populations. Cormorants (Phalacrocoracidae), for example, were previously studied to examine dietary differences between the sexes and males were found to consume larger fish in coastal areas during autumn and winter. However, information on prey partitioning during breeding and generally on sex‐specific foraging in inland waters is missing. Here, we assess sex‐specific prey choice of Great Cormorants (Phalacrocorax carbo) during two subsequent breeding seasons in the Central European Alpine foreland, an area characterized by numerous stagnant and flowing waters in close proximity to each other. We developed a unique, noninvasive approach and applied it to regurgitated pellets: molecular cormorant sexing combined with molecular fish identification and fish‐length regression analysis performed on prey hard parts. Altogether, 364 pellets delivered information on both, bird sex, and consumed prey. The sexes differed significantly in their overall prey composition, even though Perca fluviatilis, Rutilus rutilus, and Coregonus spp. represented the main food source for both. Albeit prey composition did not indicate the use of different water bodies by the sexes, male diet was characterized by higher prey diversity within a pellet and the consumption of larger fish. The current findings show that female and male cormorants to some extent target the available prey spectrum at different levels. Finally, the comprehensive and noninvasive approach has great potential for application in studies of other piscivorous bird species.  相似文献   

12.
Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems.  相似文献   

13.
A detailed sensitivity analysis of a model of a predator-prey system comprised of Tetranychus urticae and Phytoseiulus persimilis was performed. The aim was to assess the relative importance of the life history parameters of both species, the functional response, and the components of the numerical response. In addition, the impact of the initial predator-prey ratio and the timing of predator introduction were tested. Results indicated that the most important factors in the system were relative rates of predator and prey development, the time of onset of predator oviposition, and the mode of the predator's oviposition curve. The total oviposition of the predator, the effect of prey consumption on predator oviposition, and predator searching were important under some conditions. Factors of moderate importance were the adult female predator's functional response, total prey oviposition, the mode of the prey's oviposition curve, abiotic mortality of the pre-adult predator, and the effect of prey consumption on predator development and on the immature predator's mortality. Factors of least importance were the variances of the predator's and prey's oviposition curves, the abiotic mortality of the adult predator, the abiotic mortality of the pre-adult and adult prey, the functional response of the nymphal and adult male predators, and the effect of prey consumption on adult predator mortality. The sex ratios had little effect, except when the proportion of female predators was very low. The initial predator-prey ratio and time of predator introduction had significant impacts on system behavior, though the patterns of impact were different.  相似文献   

14.
SUMMARY. 1. Adult Trichoptera were caught for 1 year (February 1989-March 1990) on the banks of the Danube at Bad Deutsch Altenburg, Lower Austria, using a Jermy-type light trap. The blacklight tube of the trap was in operation all night, and the samples were taken at daily intervals. From a total of 33,465 specimens caught, the most abundant species were Psychomyia pusilla Fabr. (Psychomyidae), the three hydropsychids Hydropsyche pellucidula Curtis. Hydropsyche bulgaromanorum Mal. and Hydropsyche contubernalis McL., and the leptocerid Ceraclea dissimilis Steph.
2. The total catch included fifty-three of the 284 Austrian species from thirteen families. One female of the parthenogenetic Apatania muliebris McL. was the second specimen ever collected in Austria.
3. The phenology of seventeen species was studied in detail, all of them summer species. Two types of flying seasons were observed: short flight periods of 3 months or less (seven species) and prolonged periods lasting 4–7 months (ten species).
4. In nine species the sex ratio was significantly different from 1:1.
5. The influence of precipitation, wind speed and night air temperature (maximum, mean and minimum) on catching success was tested. Only the effect of air temperature was significant with maximum night air temperature having a highly significant (P<0,001) correlation with flight activity. No specimens were caught at maximum temperatures below 6.8°C, and catching success was highest on warmest nights.  相似文献   

15.
In some species of insects males transfer a gift to females during courtship or copulation. In the dance flies these nuptial gifts vary from nutritious prey items to inedible tokens such as a leaf, stone, or silk balloon. Nuptial gifts in dance flies are presumed to increase male mating success. We examined the strength and form of sexual selection on male Rhamphomyia sulcata, an empidid in which males provide females with a nutritious prey item as a nuptial gift. We found that whereas large males carried large gifts, neither large males nor gifts were targets of sexual selection. Indeed, correlational selection analysis and nonparametric examination of the fitness surfaces revealed that small males carrying small gifts were the most successful. Males may be more maneuverable or flight efficient with small gifts, or small males with large gifts may be unable to carry both a large gift and a female in the paired descent flight. These results suggest carrying constraints may be an important factor in determining selection on nuptial gift size. The largest target of sexual selection was old males. Old males were also paired with the largest and most fecund females, highlighting the role mate quality can further contribute to selection on males. Correlational selection analysis also revealed selection for an increase in covariance between male wing length and body size, and for an increase in slope between these traits. Males who deviate away from the optimal phenotypic relationship for two tightly related morphological traits, such as tibia and wing length, may have overall reduced performance. These findings highlight the role correlational sexual selection can play in optimizing nonsexual male morphology and scaling relationships. This study questions the role of the nuptial gift in dance flies as a resource for females.  相似文献   

16.
Division of labor is a strategy that maximizes the foraging and reproductive success of eusocial insects. Although some arachnids exhibit colony structure and social organization similar to that of hymenopterans, temporal polyethism has only been demonstrated in few species. The social organization of cooperative pseudoscorpions Paratemnoides nidificator is similar to that of social spiders, but it involves a clear division of labor. Work allocation was experimentally investigated in colonies composed of only one developmental stage (young or adults) or by one sex (males or females), through laboratory manipulation. During 44 h of observation, more than 14 000 behavioral repetitions were quantified, distributed in 95 different types of behavioral acts, and grouped in 10 behavioral categories. The results showed that reproductive colonies of P. nidificator are maintained by gender‐ and age‐based activities. Males and non‐reproductive females performed the external cleaning of the colony and prey capture. Reproductive females take care of the juveniles and build reproductive silk chambers. Nymphs build most of the molt chambers and perform internal cleaning. In the absence of nymphs, male colonies survived 1–2 mo, while female colonies survived 3–4 mo. In nymph colonies, work is readjusted so that all maintenance tasks are executed. This is the first study clearly demonstrating division of tasks in arachnids. It suggests that specialization is an adaptative and evolutionarily old trait in this species. Unlike cooperative spiders, P. nidificator possesses physiological (e.g. reproduction, ecdysis, lifespan) and behavioral (e.g. behavioral synchrony or self‐organization) characteristics that allow task specialization.  相似文献   

17.
More than half of all spider species hunt prey without a web. To successfully subdue their prey, they use adapted capture behaviour and efficient grasping mechanisms to interrupt the prey's locomotion, and to restrain it from escaping during the subsequent handling for final envenomation. In this study, we investigated how the prey capture behaviour of different lycosoid spider species is related to leg morphology and venom efficiency; using high speed videography, feeding experiments, stereomicroscopy, scanning electron microscopy and LD50 venom bioassays. We found that different species employed different techniques when grasping their prey and these differences strongly correlate with the distribution and size of hairy adhesive leg pads (so‐called scopulae on pro‐ and retrolateral parts of legs) and erectable spines, which act in a complementary way. Our results indicate that the grasping and handling behaviour and leg morphology is crucial in restricting the prey's movements. However, none of these traits is directly related with venom efficiency.  相似文献   

18.
Ornamentation of parents poses a high risk for offspring because it reduces cryptic nest defence. Over a century ago, Wallace proposed that sexual dichromatism enhances crypsis of open-nesting females although subsequent studies found that dichromatism per se is not necessarily adaptive. We tested whether reduced female ornamentation in a sexually dichromatic species reduces the risk of clutch depredation and leads to adaptive parental roles in the red-capped plover Charadrius ruficapillus, a species with biparental incubation. Males had significantly brighter and redder head coloration than females. During daytime, when visually foraging predators are active, colour-matched model males incurred a higher risk of clutch depredation than females, whereas at night there was no difference in depredation risk between sexes. In turn, red-capped plovers maintained a strongly diurnal/nocturnal division of parental care during incubation, with males attending the nest largely at night when visual predators were inactive and females incubating during the day. We found support for Wallace''s conclusion that reduced female ornamentation provides a selective advantage when reproductive success is threatened by visually foraging predators. We conclude that predators may alter their prey''s parental care patterns and therefore may affect parental cooperation during care.  相似文献   

19.
Potential factors influencing spermatozoa survival to cryopreservation and thawing were analyzed across a range of the following avian species: domestic chicken (Gallus domesticus), domestic turkey (Meleagris gallopavo), golden eagle (Aquila chrysaetos), Bonelli's eagle (Hieraaetus fasciatus), imperial eagle (Aquila adalberti), and peregrine falcon (Falco peregrinus). Studies focused on spermatozoa tolerance to the following: 1) osmotic stress, 2) different extracellular concentrations of the cryoprotectant dimethylacetamide (DMA), 3) equilibration times of 1 versus 4 h, 4) equilibration temperature of 4 versus 21 degrees C, and 5) rapid versus slow cooling before cryopreservation and standard thawing. Sperm viability was assessed with the live/dead stain (SYBR-14/propidium iodine). Sperm viability at osmolalities >/=800 mOsm was higher (P: < 0.05) in raptor than poultry semen. Return to isotonicity after exposure to hypertonicity (3000 mOsm) decreased (P: < 0.05) number of viable spermatozoa in chicken, turkey, and golden and Bonelli's eagle spermatozoa but not in imperial eagle or peregrine falcon spermatozoa. Differences were found in spermatozoa resistance to hypotonic conditions, with eagle species demonstrating the most tolerance. Semen, equilibrated for 1 h (4 degrees C) in diluent containing DMA (> or =2.06 M), experienced decreased (P: < 0. 05) spermatozoa survival in all species, except the golden eagle and peregrine falcon. Number of surviving spermatozoa diminished progressively with increasing DMA concentrations in all species. Increased equilibration temperature (from 4 to 21 degrees C) markedly reduced (P: < 0.05) spermatozoa survival in all species except the Bonelli's eagle and turkey. Rapid cooling was detrimental (P: < 0.05) to spermatozoa from all species except the imperial eagle and the chicken. These results demonstrate that avian spermatozoa differ remarkably in response to osmotic changes, DMA concentrations, equilibration time, temperature, and survival after fast or slow freezing. These differences emphasize the need for species-specific studies in the development and enhancement of assisted breeding for poultry and endangered species.  相似文献   

20.
An abundant tandem repeat has been cloned from genomic DNA of the merlin (Falco columbarius). The cloned sequence is 174 bp in length, and maps by in situ hybridization to the centromeric regions of several of the large chromosomes within the merlin karyotype. Complementary sequences have been identified within a variety of falcon species; these sequences are either absent or in very low copy number in the family Accipitridae. The cloned merlin repeat reveals highly polymorphic restriction patterns in the peregrine falcon (Falco peregrinus). These polymorphisms, which have been shown to be stably inherited within a family of captive peregrines, can be used to differentiate the Greenland and Argentina populations of this endangered raptor species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号