首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanisms that lead to tubular atrophy, capillary loss, and fibrosis following acute kidney injury are not very clear but may involve cell cycle inhibition by increased expression of cyclin kinase inhibitors. The INK4a/ARF locus encodes overlapping genes for two proteins, a cyclin kinase inhibitor, p16(INK4a), and a p53 stabilizer, p19(ARF), from independent promoters. To determine if decreased INK4a gene expression results in improved kidney regeneration, INK4a knockout (KO) and wild-type (WT) mice were subjected to ischemia-reperfusion injury (IRI). p16(INK4a) and p19(ARF) levels were increased markedly in WT mice at 1-28 days after injury. Kidneys were examined to determine the localization and levels of p16(INK4a), apoptosis, cell proliferation, and capillary rarefaction. KO mice displayed decreased tubular cell apoptosis, increased cell proliferation, and lower creatinine levels after injury. KO mice had significantly higher capillary density compared with WT mice at 14-42 days after IRI. Plasma granulocyte colony-stimulating factor (G-CSF) increased after ischemia in both WT and KO mice and was elevated markedly in KO compared with WT mice. KO kidney digests contained higher counts of Gr-1(+)/Cd11b(+) myeloid cells by flow cytometry. KO mice treated with a Gr-1-depleting antibody displayed reduced vascular endothelial growth factor mRNA, plasma G-CSF, and capillary density, and an increase in serum creatinine and medullary myofibroblasts, compared with untreated KO mice 14 days after ischemia. The anti-angiogenic effect of Gr-1 depletion in KO mice was confirmed by Matrigel angiogenesis assays. These results suggest that the absence of p16(INK4a) and p19(ARF) following IRI has a protective effect on the kidney through improved epithelial and microvascular repair, in part by enhancing the mobilization of myeloid cells into the kidney.  相似文献   

2.
Inflammatory response plays an important role in ischaemia reperfusion injury (IRI) through a variety of inflammatory cells. Apart from neutrophils, macrophages and lymphocytes, the role of dendritic cells (DCs) in IRI has been noticed. The study was aimed at investigating whether the high‐mobility group protein box‐1/toll like receptor 4 (HMGB1/TLR4) signalling pathway regulate the migration, adhesion and aggregation of DCs to the myocardium, induce DCs activation and maturation, stimulate the expression of surface costimulatory molecules and participate in myocardial IRI. In vivo, migration, adhesion, and aggregation of DCs was enhanced; the expression of peripheral blood DCs CD80 and CD86, myocardial adhesion molecules were increased; and the infarct size was increased during myocardial ischaemia reperfusion injury myocardial ischemic/reperfusion injury (MI/RI). These responses induced by MI/RI were significantly inhibited by HMGB1 specific neutralizing antibody treatment. Cellular experiments confirmed that HMGB1 promoted the release of inflammatory cytokines through TLR4/MyD88/NF‐κB, upregulated CD80 and CD86 expression, mediated the damage of cardiomyocytes and accelerated the apoptosis. Our results indicate that DCs activation and maturation, stimulate the expression of surface costimulatory molecules by promoting the release of inflammatory factors through NF‐κB pathway and participate in myocardial IRI.  相似文献   

3.
4.
β‐Arrestins are scaffolding proteins implicated as negative regulators of TLR4 signaling in macrophages and fibroblasts. Unexpectedly, we found that β‐arrestin‐1 (β‐arr‐1) and ‐2 knockout (KO) mice are protected from TLR4‐mediated endotoxic shock and lethality. To identify the potential mechanisms involved, we examined the plasma levels of inflammatory cytokines/chemokines in the wild‐type (WT) and β‐arr‐1 and ‐2 KO mice after lipopolysaccharide (LPS, a TLR4 ligand) injection. Consistent with lethality, LPS‐induced inflammatory cytokine levels in the plasma were markedly decreased in both β‐arr‐1 and ‐2 KO, compared to WT mice. To further explore the cellular mechanisms, we obtained splenocytes (separated into CD11b+ and CD11b? populations) from WT, β‐arr‐1, and ‐2 KO mice and examined the effect of LPS on cytokine production. Similar to the in vivo observations, LPS‐induced inflammatory cytokines were significantly blocked in both splenocyte populations from the β‐arr‐2 KO compared to the WT mice. This effect in the β‐arr‐1 KO mice, however, was restricted to the CD11b? splenocytes. Our studies further indicate that regulation of cytokine production by β‐arrestins is likely independent of MAPK and IκBα‐NFκB pathways. Our results, however, suggest that LPS‐induced chromatin modification is dependent on β‐arrestin levels and may be the underlying mechanistic basis for regulation of cytokine levels by β‐arrestins in vivo. Taken together, these results indicate that β‐arr‐1 and ‐2 mediate LPS‐induced cytokine secretion in a cell‐type specific manner and that both β‐arrestins have overlapping but non‐redundant roles in regulating inflammatory cytokine production and endotoxic shock in mice. J. Cell. Physiol. 225: 406–416, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
In this study, we investigated the therapeutic potential of lentinan in mouse models of inflammatory bowel disease (IBD) and colitis‐associated cancer (CAC). Lentinan decreased the disease activity index and macroscopic and microscopic colon tissue damage in dextran sulphate sodium (DSS)‐induced or TNBS‐induced models of colitis. High‐dose lentinan was more effective than salicylazosulfapyridine in the mouse models of colitis. Lentinan decreased the number of tumours, inflammatory cell infiltration, atypical hyperplasia and nuclear atypia in azoxymethane/DSS‐induced CAC model. It also decreased the expression of pro‐inflammatory cytokines, such as IL‐13 and CD30L, in IBD and CAC model mice possibly by inhibiting Toll‐like receptor 4 (TLR4)/NF‐κB signalling and the expression of colon cancer markers, such as carcinoembryonic antigen, cytokeratin 8, CK18 and p53, in CAC model mice. In addition, lentinan restored the intestinal bacterial microbiotal community structure in IBD model mice. Thus, it shows therapeutic potential in IBD and CAC model mice possibly by inhibiting TLR4/NF‐κB signalling‐mediated inflammatory responses and disruption of the intestinal microbiotal structure.  相似文献   

6.
Chronic pancreatitis (CP), characterized by pancreatic fibrosis, is a recurrent, progressive and irreversible disease. Activation of the pancreatic stellate cells (PSCs) is considered a core event in pancreatic fibrosis. In this study, we investigated the role of hydrogen peroxide‐inducible clone‐5 (Hic‐5) in CP. Analysis of the human pancreatic tissue samples revealed that Hic‐5 was overexpressed in patients with CP and was extremely low in healthy pancreas. Hic‐5 was significant up‐regulated in the activated primary PSCs independently from transforming growth factor beta stimulation. CP induced by cerulein injection was ameliorated in Hic‐5 knockout (KO) mice, as shown by staining of tissue level. Simultaneously, the activation ability of the primary PSCs from Hic‐5 KO mice was significantly attenuated. We also found that the Hic‐5 up‐regulation by cerulein activated the NF‐κB (p65)/IL‐6 signalling pathway and regulated the downstream extracellular matrix (ECM) genes such as α‐SMA and Col1a1. Therefore, we determined whether suppressing NF‐κB/p65 alleviated CP by treating mice with the NF‐κB/p65 inhibitor triptolide in the cerulein‐induced CP model and found that pancreatic fibrosis was alleviated by NF‐κB/p65 inhibition. These findings provide evidence for Hic‐5 as a therapeutic target that plays a crucial role in regulating PSCs activation and pancreatic fibrosis.  相似文献   

7.
Studies have shown that administration of 17β‐estradiol prevents trauma‐hemorrhage‐induced increase in proinflammatory cytokine production by Kupffer cells and associated multiple organ injury. Since activation of peroxisome proliferator‐activated receptor γ (PPARγ) following ischemic conditions has been shown to be protective, we examined if PPARγ plays any role in the salutary effects of 17β‐estradiol on Kupffer cell cytokine production following trauma‐hemorrhage. Male mice underwent trauma‐hemorrhage (mean blood pressure 40 mmHg for 90 min, then resuscitation). 17β‐estradiol (50 µg/kg) or vehicle with or without PPARγ antagonist GW9662 was injected subcutaneously at the middle of resuscitation. At 2 h after trauma‐hemorrhage, plasma interleukin (IL)‐6 and tumor necrosis factor (TNF)‐α levels, Kupffer cell IL‐6 and TNF‐α production and mRNA expression, and PPARγ, nuclear factor (NF)‐κB and activator protein (AP)‐1 DNA binding activity were determined. Kupffer cell IL‐6 and TNF‐α production, as well as plasma IL‐6 and TNF‐α levels, increased following trauma‐hemorrhage. Moreover, NF‐κB and AP‐1 DNA binding activity and IL‐6 and TNF‐α mRNA expression were also enhanced under such conditions. However, 17β‐estradiol administration normalized all these parameters. Although PPARγ activity decreased after trauma‐hemorrhage, administration of 17β‐estradiol following trauma‐hemorrhage elevated PPARγ activity above the normal level. Inhibition of PPARγ by co‐administration of GW9662, however, abolished the salutary effects of 17β‐estradiol on plasma cytokine and Kupffer cells. Thus, activation of PPARγ appears to play an important role in mediating the salutary effects of 17β‐estradiol on plasma cytokine levels and Kupffer cell cytokine production after trauma‐hemorrhage, which are likely mediated via NF‐κB and AP‐1. J. Cell. Physiol. 226: 205–211, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Although amphotericin B (AmB) is a major polyene antibiotic against invasive fungal infection, administration to patients sometimes causes inflammatory side effects, which limits the usage of the antibiotic. We studied the intracellular signaling that was induced by AmB. p65 (RelA) of nuclear factor‐κB (NF‐κB), a well‐known signaling molecule as an inducer of proinflammatory cytokines, was phosphorylated by AmB in RAW264.7 cells, a monocyte‐like cell line. Among chemical inhibitors of signaling molecules, U‐73122 (phospholipase C (PLC) inhibitor), Gö6976 (protein kinase C (PKC) inhibitor), BAPTA‐AM (calcium chelator), LFM‐A13 (Bruton's tyrosine kinase (Btk)‐specific inhibitor), and PP2 (c‐Src kinase inhibitor) suppressed AmB‐induced phosphorylation of p65 and translocation of p65 into the nucleus. U‐73122 and Gö6976 reduced AmB‐mediated induction of proinflammatory cytokines (tumor necrosis factor (TNF)‐α and interleukin (IL)‐6) in RAW264.7 cells. Furthermore, AmB‐induced activation of NF‐ κ B was observed in toll‐like receptor (TLR) 2‐expressed cells, and the activation of NF‐κB was inhibited by U‐73122, whereas peptidoglycan‐induced NF‐κB activation, which was also dependent on TLR2, was not inhibited by U‐73122. Finally, U‐73122 partially suppressed in vivo production of TNF‐α and IL‐6 induced by AmB administration in BALB/c mice. These results suggested that the signaling from AmB stimulation to proinflammatory cytokine production is mediated by TLR2, Btk, PLC, PKC, c‐Src and NF‐κB. These signaling molecules may become a target for chemotherapy suppressing AmB‐induced proinflammatory cytokine production.  相似文献   

9.
10.
Obesity is a major and independent risk factor of kidney diseases. The pathogenic mechanisms of obesity‐associated renal injury are recognized to at least involve a lipid‐rich and pro‐inflammatory state of the renal tissues, but specific mechanisms establishing causal relation remain unknown. Saturated fatty acids are elevated in obesity, and known to induce chronic inflammation in kidneys. Myeloid differentiation protein 2 (MD2) is an important protein in lipopolysaccharide‐induced innate immunity response and inflammation. We suggested that obesity‐associated renal injury is regulated by MD2 thereby driving an inflammatory renal injury. The used three mouse models for in vivo study: MD2 knockout mice (KO) maintained on high fat diet (HFD), wild‐type mice on HFD plus L6H21, a specific MD2 inhibitor and KO mice given palmitic acid (PA) by IV injection. The in vitro studies were carried out in cultured renal tubular epithelial cells, mouse mesangial cells and primary macrophages, respectively. The HFD mice presented with increased hyperlipidemia, serum creatinine and proteinuria. Renal tissue from HFD mice had increased fibrosis, inflammatory cytokines, macrophage infiltration, and activation of NF‐κB and MAPKs. This HFD‐induced renal injury profile was not observed in KO mice or L6H21‐treated mice. Mice given PA mimmicked the HFD‐induced renal injury profiles, which were prevented by MD2 knockout. The in vitro data further confirmed MD2 mediates PA‐induced inflammation. MD2 is causally related with obesity‐associated renal inflammatory injury. We believe that MD2 is an attractive target for future therapeutic strategies in obesity‐associated kidney diseases.  相似文献   

11.
A(2A) adenosine receptor (A(2A)R)-expressing bone marrow (BM)-derived cells contribute to the renal protective effect of A(2A) agonists in renal ischemia-reperfusion injury (IRI). We performed IRI in mice lacking T and B cells to determine whether A(2A)R expressed in CD4+ cells mediate protection from IRI. Rag-1 knockout (KO) mice were protected in comparison to wild-type (WT) mice when subjected to IRI. ATL146e, a selective A(2A) agonist, did not confer additional protection. IFN-gamma is an important early signal in IRI and is thought to contribute to reperfusion injury. Because IFN-gamma is produced by kidney cells and T cells we performed IRI in BM chimeras in which the BM of WT mice was reconstituted with BM from IFN-gamma KO mice (IFN-gamma KO-->WT chimera). We observed marked reduction in IRI in comparison to WT-->WT chimeras providing additional indirect support for the role of T cells. To confirm the role of CD4+ A(2A)R in mediating protection from IRI, Rag-1 KO mice were subjected to ischemia-reperfusion. The protection observed in Rag-1 KO mice was reversed in Rag-1 KO mice that were adoptively transferred WT CD4+ cells (WT CD4+-->Rag-1 KO) or A(2A) KO CD4+ cells (A(2A) KO CD4+-->Rag-1 KO). ATL146e reduced injury in WT CD4+-->Rag-1 KO mice but not in A(2A) KO CD4+-->Rag-1 KO mice. Rag-1 KO mice reconstituted with CD4+ cells derived from IFN-gamma KO mice (IFN-gamma CD4+-->Rag-1 KO) were protected from IRI; ATL146e conferred no additional protection. These studies demonstrate that CD4+ IFN-gamma contributes to IRI and that A(2A) agonists mediate protection from IRI through action on CD4+ cells.  相似文献   

12.
13.
Despite advances in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely owing to extrarenal organ dysfunction. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that facilitate organ crosstalk and induce caspase-dependent lung apoptosis and injury through a TNFR1-dependent pathway. Given that T lymphocytes mediate local IRI in the kidney and are known to drive TNFR1-mediated apoptosis, we hypothesized that T lymphocytes activated during kidney IRI would traffic to the lung and mediate pulmonary apoptosis during AKI. In an established murine model of kidney IRI, we identified trafficking of CD3(+) T lymphocytes to the lung during kidney IRI by flow cytometry and immunohistochemistry. T lymphocytes were primarily of the CD3(+)CD8(+) phenotype; however, both CD3(+)CD4(+) and CD3(+)CD8(+) T lymphocytes expressed CD69 and CD25 activation markers during ischemic AKI. The activated lung T lymphocytes did not demonstrate an increased expression of intracellular TNF-α or surface TNFR1. Kidney IRI induced pulmonary apoptosis measured by caspase-3 activation in wild-type controls, but not in T cell-deficient (T(nu/nu)) mice. Adoptive transfer of murine wild-type T lymphocytes into T(nu/nu) mice restored the injury phenotype with increased cellular apoptosis and lung microvascular barrier dysfunction, suggesting that ischemic AKI-induced pulmonary apoptosis is T cell dependent. Kidney-lung crosstalk during AKI represents a complex biological process, and although T lymphocytes appear to serve a prominent role in the interorgan effects of AKI, further experiments are necessary to elucidate the specific role of activated T cells in modulating pulmonary apoptosis.  相似文献   

14.
We have recently reported that TLR‐related genes, including TLR7, are upregulated during aging. However, the role of TLR7 and its endogenous ligand in inflammation related to aging is not well defined. Here, we established that small RNAs trigger age‐related renal inflammation via TLR7 signaling pathway. We first investigated the expression changes of nine different TLRs in kidney of 6‐month‐old young rats and 20‐month‐old aged rats. The results revealed that the expression of TLR7 was the highest among nine TLRs in kidney of old rats compared to the young aged rats. Next, to assess the role of cellular RNA as a TLR7 ligand, we treated a renal tubular epithelial cell line with total RNA isolated from the kidney of young and old rats. The results showed that RNA isolated from old rats showed higher expression of TLR7, IL1β, and TNFα compared to that from young rats. Furthermore, RNA isolated from old rats induced IKKα/β/JNK/NF‐κB activation. To identify RNA that activates TLR7, we isolated small and large RNAs from old rat kidney and found that small RNAs increased TLR7 expression in cells. Finally, to investigate the local inflammatory response by small RNA, C57B/L6 mice were intraperitoneally injected with small RNAs isolated from young and old rats; thereby, RNA isolated from old rats induced higher inflammatory responses. Our study demonstrates that renal small RNAs from aged rats induce pro‐inflammatory processes via the activation of the TLR7/IKKα/β/JNK/NF‐κB signaling pathway, and highlights its causative role as a possible therapeutic target in age‐related chronic renal inflammation.  相似文献   

15.

Aim

Activation of the master energy-regulator AMP-activated protein kinase (AMPK) in the heart reduces the severity of ischemia-reperfusion injury (IRI) but the role of AMPK in renal IRI is not known. The aim of this study was to determine whether activation of AMPK by acute renal ischemia influences the severity of renal IRI.

Methods

AMPK expression and activation and the severity of renal IRI was studied in mice lacking the AMPK β1 subunit and compared to wild type (WT) mice.

Results

Basal expression of activated AMPK, phosphorylayed at αThr172, was markedly reduced by 96% in AMPK-β1−/− mice. Acute renal ischaemia caused a 3.2-fold increase in α1-AMPK activity and a 2.5-fold increase in α2-AMPK activity (P<0.001) that was associated with an increase in AMPK phosphorylation of the AMPK-α subunit at Thr172 and Ser485, and increased inhibitory phosphorylation of the AMPK substrate acetyl-CoA carboxylase. After acute renal ischemia AMPK activity was reduced by 66% in AMPK-β1−/− mice compared with WT. There was no difference, however, in the severity of renal IRI at 24-hours between AMPK-β1−/− and WT mice, as measured by serum urea and creatinine and histological injury score. In the heart, macrophage migration inhibitory factor (MIF) released during IRI contributes to AMPK activation and protects from injury. In the kidney, however, no difference in AMPK activation by acute ischemia was observed between MIF−/− and WT mice. Compared with the heart, expression of the MIF receptor CD74 was found to be reduced in the kidney.

Conclusion

The failure of AMPK activation to influence the outcome of IRI in the kidney contrasts with what is reported in the heart. This difference might be due to a lack of effect of MIF on AMPK activation and lower CD74 expression in the kidney.  相似文献   

16.
Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.  相似文献   

17.
Acute kidney injury (AKI) incidence among hospitalized patients is increasing steadily. Despite progress in prevention strategies and support measures, AKI remains correlated with high mortality, particularly among ICU patients, and no effective AKI therapy exists. Here, we investigated the function in kidney ischaemia‐reperfusion injury (IRI) of C1orf54, a newly identified protein encoded by an open reading frame on chromosome 1. C1orf54 expression was high in kidney and low in heart, liver, spleen, lung and skeletal muscle in healthy mice, and in the kidney, C1orf54 was expressed in tubular epithelial cells (TECs), but not in glomeruli. C1orf54 expression was markedly decreased on Day 1 after kidney IRI and then gradually recovered to baseline levels by Day 7. Notably, relative to wild‐type mice, C1orf54‐knockout mice exhibited impaired TEC proliferation and delayed recovery after kidney IRI, which led to deteriorated renal function and increased mortality. Conversely, adenovirus‐mediated C1orf54 overexpression promoted TEC proliferation and ameliorated kidney pathology, which resulted in accelerated renal repair and improved renal function. Mechanistically, C1orf54 was found to promote TEC proliferation through PI3K/AKT signalling. Thus, C1orf54 holds considerable potential as a therapeutic target in kidney IRI.  相似文献   

18.
This study pointed to estimate the possible protective impacts of candesartan and/or epigallocatechin‐3‐gallate (EGCG) against gentamicin‐induced nephrotoxicity. The current work revealed that gentamicin significantly elevated relative kidney weight and the serum level of creatinine and urea. Also, renal level of malondialdehyde was significantly increased with a concurrent decrease in renal glutathione‐S‐transferase and superoxide dismutase activities. Moreover, renal levels of nuclear factor‐kappa B (NF‐κB) and p38 mitogen‐activated protein kinase (p38‐MAPK) were increased together with the elevation of tumor necrosis factor‐alpha and interleukin‐1 beta levels after gentamicin treatment. In addition, caspase‐3 expression was elevated, and histological examination revealed extreme alterations enlightening inflammation, degeneration, and necrosis. Pretreatments with candesartan and/or EGCG attenuated gentamicin‐induced nephrotoxicity. Importantly, the altered expression of p38‐MAPK and NF‐κB may play a significant role in the protective mechanisms exerted by candesartan and EGCG. Coadministration of candesartan and EGCG exhibited more profound response compared with the monotherapy.  相似文献   

19.
Objective: Inflammatory activity in fat tissue has recently been implicated in mechanisms of insulin resistance and obesity‐related metabolic dysfunction. Toll‐like receptors (TLRs) play a key role in innate immune responses and recent studies implicate the TLR pathway in mechanisms of inflammation and atherosclerosis. The aim of this study was to examine differential TLR expression and function in human adipose tissue. Methods and Procedures: We biopsied subcutaneous abdominal fat from 16 obese subjects (age 39 ± 11 years, BMI 49 ± 14 kg/m2) and characterized TLR expression using quantitative real‐time PCR and confocal immunofluorescence imaging. In tissue culture, we stimulated isolated human adipocytes with Pam3CSK4 and lipopolysaccharide (LPS) (TLR2 and TLR4 agonists, respectively) and quantified TLR activity, interleukin‐6 (IL‐6) and tumor necrosis factor‐α (TNF‐α) production, and nuclear factor‐κB (NF‐κB) p65 nuclear activation using real‐time PCR, enzyme‐linked immunosorbent assay (ELISA), and immunofluorescence. Results: TLR1, 2, and 4 protein colocalized with adiponectin in human adipocytes with TLR4 exhibiting the highest immunohistochemical expression. Using real‐time PCR, we confirmed higher level of gene expression for TLR4 as compared to other members of the TLR family (TLR1, 2, 7, 8) in human adipose depots (P < 0.001). In tissue culture, adipocyte TLR2/TLR4 mRNA expression and protein increased significantly following Pam3CSK4 and LPS (P < 0.001). TLR2/TLR4 stimulation was associated with NF‐κB p65 nuclear translocation and proinflammatory cytokine production. Discussion: The findings demonstrate that TLRs are inducible in adipose tissue and linked with downstream NF‐κB activation and cytokine release. Adipose stores may play a dynamic role in the regulation of inflammation and innate immunity in human subjects via modulation of the TLR/NF‐κB regulatory pathway.  相似文献   

20.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号