首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

2.
Habitat fragmentation increasingly threatens the services provided by natural communities and ecosystem worldwide. An understanding of the eco‐evolutionary processes underlying fragmentation‐compromised communities in natural settings is lacking, yet critical to realistic and sustainable conservation. Through integrating the multivariate genetic, biotic and abiotic facets of a natural community module experiencing various degrees of habitat fragmentation, we provide unique insights into the processes underlying community functioning in real, natural conditions. The focal community module comprises a parasitic butterfly of conservation concern and its two obligatory host species, a plant and an ant. We show that both historical dispersal and ongoing habitat fragmentation shape population genetic diversity of the butterfly Phengaris alcon and its most limited host species (the plant Gentiana pneumonanthe). Genetic structure of each species was strongly driven by geographical structure, altitude and landscape connectivity. Strikingly, however, was the strong degree of genetic costructure among the three species that could not be explained by the spatial variables under study. This finding suggests that factors other than spatial configuration, including co‐evolutionary dynamics and shared dispersal pathways, cause parallel genetic structure among interacting species. While the exact contribution of co‐evolution and shared dispersal routes on the genetic variation within and among communities deserves further attention, our findings demonstrate a considerable degree of genetic parallelism in natural meta‐communities. The significant effect of landscape connectivity on the genetic diversity and structure of the butterfly also suggests that habitat fragmentation may threaten the functioning of the community module on the long run.  相似文献   

3.
The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use‐driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species‐specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up‐ vs. downstream) of predicted habitat shifts under coupled “moderate” and “severe” climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller‐bodied fishes and to contract for larger‐bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller‐bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger‐bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller‐bodied species are rather restricted by their specific dispersal ability.  相似文献   

4.
Alpine biotas are paradigmatic of the countervailing roles of geographical isolation and dispersal during diversification. In temperate regions, repeated distributional shifts driven by Pleistocene climatic oscillations produced both recurrent pulses of population fragmentation and opportunities for gene flow during range expansions. Here, we test whether a model of divergence in isolation vs. with gene flow is more likely in the diversification of flightless alpine grasshoppers of the genus Podisma from the Iberian Peninsula. The answer to this question can also provide key insights about the pace of evolution. Specifically, if the data fit a divergence in isolation model, this suggests rapid evolution of reproductive isolation. Genomic data confirm a Pleistocene origin of the species complex, and multiple analytical approaches revealed limited asymmetric historical hybridization between two taxa. Genomic-based demographic reconstructions, spatial patterns of genetic structure and range shifts inferred from palaeodistribution modelling suggest severe range contraction accompanied by declines in effective population sizes during interglacials (i.e., contemporary populations confined to sky islands are relicts) and expansions during the coldest stages of the Pleistocene in each taxon. Although limited hybridization during secondary contact leads to phylogenetic uncertainty if gene flow is not accommodated when estimating evolutionary relationships, all species exhibit strong genetic cohesiveness. Our study lends support to the notion that the accumulation of incipient differences during periods of isolation were sufficient to lead to lineage persistence, but also that the demographic changes, dispersal constraints and spatial distribution of the sky islands themselves mediated species diversification in temperate alpine biotas.  相似文献   

5.
Bioclimate envelope models (BEMs) have often been criticized as being too simplistic due to e.g. not incorporating effects of biotic interactions or evolutionary adaptation. However, BEMs are widely applied and have proven to be often useful. Here we investigate, under which conditions evolution of dispersal, local adaptation or interspecific competition may be of minor importance for forecasting future range shifts. Therefore we use individual‐based simulations of metapopulations under climate change living in spatial temperature gradients. Scenarios incorporate single‐species systems or systems with competing species, respectively. Dispersal rate is evolving and adaptation to local conditions may also evolve in some scenarios. Results show that in single‐species scenarios excluding evolutionary adaptation, species either follow optimal habitat conditions or go extinct if habitat connectivity is too low. These simulations are in close accordance to predictions from BEMs. Including evolutionary adaptation qualitatively changes these results. In the absence of competing species the species either completely invades the world or goes extinct. With competitors, results strongly depend on habitat fragmentation. For highly connected habitats the range border may shift as predicted by BEMs, for intermediate connectivity it will lag behind, while species will go extinct if fragmentation is too high. Our results indicate that (simple) BEMs may work well if habitats are well connected and species will not encounter many difficulties in dispersing to new sites. Selection in this case may promote evolution of even higher dispersal activities. We thus show that the presence of biotic interactions may be ignored for predictions of range shifts when high dispersal can be expected.  相似文献   

6.
Understanding the impact of past climatic events on the demographic history of extant species is critical for predicting species' responses to future climate change. Palaeoclimatic instability is a major mechanism of lineage diversification in taxa with low dispersal and small geographical ranges in tropical ecosystems. However, the impact of these climatic events remains questionable for the diversification of species with high levels of gene flow and large geographical distributions. In this study, we investigate the impact of Pleistocene climate change on three Neotropical orchid bee species (Eulaema bombiformis, E. meriana and E. cingulata) with transcontinental distributions and different physiological tolerances. We first generated ecological niche models to identify species‐specific climatically stable areas during Pleistocene climatic oscillations. Using a combination of mitochondrial and nuclear markers, we inferred calibrated phylogenies and estimated historical demographic parameters to reconstruct the phylogeographical history of each species. Our results indicate species with narrower physiological tolerance experienced less suitable habitat during glaciations and currently exhibit strong population structure in the mitochondrial genome. However, nuclear markers with low and high mutation rates show lack of association with geography. These results combined with lower migration rate estimates from the mitochondrial than the nuclear genome suggest male‐biased dispersal. We conclude that despite large effective population sizes and capacity for long‐distance dispersal, climatic instability is an important mechanism of maternal lineage diversification in orchid bees. Thus, these Neotropical pollinators are susceptible to disruption of genetic connectivity in the event of large‐scale climatic changes.  相似文献   

7.
Interacting species of pollinator–host systems, especially the obligate ones, are sensitive to habitat fragmentation, due to the nature of mutual dependence. Comparative studies of genetic structure can provide insights into how habitat fragmentation contributes to patterns of genetic divergence among populations of the interacting species. In this study, we used microsatellites to analyse genetic variation in Chinese populations of a typical mutualistic system – Ficus pumila and its obligate pollinator Wiebesia sp. 1 – in a naturally fragmented landscape. The plants and wasps showed discordant patterns of genetic variation and geographical divergence. There was no significant positive relationship in genetic diversity between the two species. Significant isolation‐by‐distance (IBD) patterns occurred across the populations of F. pumila and Wiebesia sp. 1 as whole, and IBD also occurred among island populations of the wasps, but not the plants. However, there was no significant positive relationship in genetic differentiation between them. The pollinator populations had significantly lower genetic variation in small habitat patches than in larger patches, and three island pollinator populations showed evidence of a recent bottleneck event. No effects of patch size or genetic bottlenecks were evident in the plant populations. Collectively, the results indicate that, in more fragmented habitats, the pollinators, but not the plants, have experienced reduced genetic variation. The contrasting patterns have multiple potential causes, including differences in longevity and hence number of generations experiencing fragmentation; different dispersal patterns, with the host's genes dispersed as seeds as well as a result of pollen dispersal via the pollinator; asymmetrical responses to fluctuations in partner populations; and co‐existence of a rare second pollinating wasp on some islands. These results indicate that strongly interdependent species may respond in markedly different ways to habitat fragmentation.  相似文献   

8.
Habitat fragmentation can restrict geneflow, reduce neighbourhood effective population size, and increase genetic drift and inbreeding in small, isolated habitat remnants. The extent to which habitat fragmentation leads to population fragmentation, however, differs among landscapes and taxa. Commonly, researchers use information on the current status of a species to predict population effects of habitat fragmentation. Such methods, however, do not convey information on species-specific responses to fragmentation. Here, we compare levels of past population differentiation, estimated from microsatellite genotypes, with contemporary dispersal rates, estimated from multi-strata capture-recapture models, to infer changes in mobility over time in seven sympatric, forest-dependent bird species of a Kenyan cloud forest archipelago. Overall, populations of sedentary species were more strongly differentiated and clustered compared to those of vagile ones, while geographical patterning suggested an important role of landscape structure in shaping genetic variation. However, five of seven species with broadly similar levels of genetic differentiation nevertheless differed substantially in their current dispersal rates. We conclude that post-fragmentation levels of vagility, without reference to past population connectivity, may not be the best predictor of how forest fragmentation affects the life history of forest-dependent species. As effective conservation strategies often hinge on accurate prediction of shifts in ecological and genetic relationships among populations, conservation practices based solely upon current population abundances or movements may, in the long term, prove to be inadequate.  相似文献   

9.
Anthropogenic habitat fragmentation often restricts gene flow and results in small populations that are at risk of inbreeding. However, some endangered species naturally occupy patchy habitat where local population extinction and recolonization are normal. We investigated population fragmentation in the range‐restricted New Zealand small‐scaled skink (Oligosoma microlepis), documenting changes in habitat occupancy and analyzing mitochondrial, microsatellite, and morphological variation sampled across the geographical range of the species (approximately 100 km2). Small‐scaled skinks have a strong preference for rocky outcrops that exist in a mosaic of other habitat types. A metapopulation structure was indicated by both local extinction and colonization of new sites. We found relatively high mtDNA nucleotide site diversity within this narrow range (π = 0.004; 16S), evidence of inter‐patch gene flow, and no statistical support for inbreeding. Gene flow was limited by geographical distance, although the existence of pasture between habitat patches apparently has not prevented skink dispersal. Generalized linear models indicated an association between body size and location suggesting a local environmental influence on phenotype. Prior to human‐induced habitat modification, native forest probably separated preferred sites and, less than 2000 years ago, volcanic activity devastated much of the area currently occupied by O. microlepis. This skink appears able to re‐establish populations if other human‐linked factors such as agricultural intensification and introduced predators are limited. Although in contrast to expectations for a scarce and localized species living in a highly modified landscape, this lizard may have previously adapted to a dynamic, mosaic environment mediated by volcanism.  相似文献   

10.
We investigated the phylogeographic patterns of Merodon species (Diptera, Syrphidae) in the Eastern Mediterranean. Ten species were sampled on five different islands and mainland sites as a minimum. All samples were screened for their mtDNA COI barcode haplotype diversity, and for some samples, we additionally generated genomic fingerprints. The recently established zoogeographic distribution categories classify these species as having (1) Balkan distribution; (2) Anatolian distribution; (3) continental areas and large islands distribution; and (4) with wide distribution. The ancestral haplotypes and their geographical localities were estimated with statistical parsimony (TCS). TCS networks identified as the ancestral haplotype samples that originated from localities situated within the distributional category of the species in question. Strong geographical haplotype structuring was detected for many Merodon species. We were particularly interested to test the relative importance of current (Aegean Sea) and past Mid‐Aegean Trench) barriers to dispersal for Merodon flies in the Aegean. We employed phylogenetic β‐diversity (Pβtotal) and its partition in replacement (Pβrepl) and richness difference (Pβrich) to test the importance of each explanatory variable (interisland distance, MAT, and island area) in interisland differences using partial Mantel tests and hierarchical partitioning of variation. β‐Analyses confirmed the importance of both current and past barriers to dispersal on the evolution of group. Current interisland distance was particularly important to explain the replacement of haplotypes, while the MAT was driving differences in richness of haplotypes, revealing the MAT as a strong past barrier whose effects are still visible today in the phylogenetic history of the clade in the Aegean. These results support the hypothesis of a highly restricted dispersal and gene flow among Merodon populations between islands since late Pleistocene. Additionally, patterns of phylogeographic structure deduced from haplotype connections and ISSR genome fingerprinting data revealed a few putative cases of human‐mediated transfers of Merodon spp.  相似文献   

11.
MigClim: Predicting plant distribution and dispersal in a changing climate   总被引:1,自引:0,他引:1  
Aim Many studies have forecasted the possible impact of climate change on plant distributions using models based on ecological niche theory, but most of them have ignored dispersal‐limitations, assuming dispersal to be either unlimited or null. Depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under‐ or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of ‘potentially suitable’ and ‘potentially colonizable’ habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed Mig Clim, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. Mig Clim implements various parameters, such as dispersal distance, increase in reproductive potential over time, landscape fragmentation or long‐distance dispersal. Location Western Swiss Alps. Methods Using our Mig Clim model, several simulations were run for two virtual species by varying dispersal distance and other parameters. Each simulation covered the 100‐year period 2001–2100 and three different IPCC‐based temperature warming scenarios were considered. Results of dispersal‐limited projections were compared with unlimited and no‐dispersal projections. Results Our simulations indicate that: (1) using realistic parameter values, the future potential distributions generated using Mig Clim can differ significantly (up to more than 95% difference in colonized surface) from those that ignore dispersal; (2) this divergence increases under more extreme climate warming scenarios and over longer time periods; and (3) the uncertainty associated with the warming scenario can be as large as the one related to dispersal parameters. Main conclusions Accounting for dispersal, even roughly, can importantly reduce uncertainty in projections of species distribution under climate change scenarios.  相似文献   

12.
Species distribution modelling is an easy, persuasive and useful tool for anticipating species distribution shifts under global change. Numerous studies have used only climate variables to predict future potential species range shifts and have omitted environmental factors important for determining species distribution. Here, we assessed the importance of the edaphic dimension in the niche‐space definition of Quercus pubescens and in future spatial projections under global change over the metropolitan French forest territory. We fitted two species distribution models (SDM) based on presence/absence data (111 013 plots), one calibrated from climate variables only (mean temperature of January and climatic water balance of July) and the other one from both climate and edaphic (soil pH inferred from plants) variables. Future predictions were conducted under two climate scenarios (PCM B2 and HadCM3 A2) and based on 100 simulations using a cellular automaton that accounted for seed dispersal distance, landscape barriers preventing migration and unsuitable land cover. Adding the edaphic dimension to the climate‐only SDM substantially improved the niche‐space definition of Q. pubescens, highlighting an increase in species tolerance in confronting climate constraints as the soil pH increased. Future predictions over the 21st century showed that disregarding the edaphic dimension in SDM led to an overestimation of the potential distribution area, an underestimation of the spatial fragmentation of this area, and prevented the identification of local refugia, leading to an underestimation of the northward shift capacity of Q. pubescens and its persistence in its current distribution area. Spatial discrepancies between climate‐only and climate‐plus‐edaphic models are strengthened when seed dispersal and forest fragmentation are accounted for in predicting a future species distribution area. These discrepancies highlight some imprecision in spatial predictions of potential distribution area of species under climate change scenarios and possibly wrong conclusions for conservation and management perspectives when climate‐only models are used.  相似文献   

13.
Understanding the biotic consequences of Pleistocene range shifts and fragmentation remains a fundamental goal in historical biogeography and evolutionary biology. Here, we combine species distribution models (SDM) from the present and two late Quaternary time periods with multilocus genetic data (mitochondrial DNA and microsatellites) to evaluate the effect of climate‐induced habitat shifts on population genetic structure in the Large‐blotched Ensatina (Ensatina eschscholtzii klauberi), a plethodontid salamander endemic to middle and high‐elevation conifer forest in the Transverse and Peninsular Ranges of southern California and northern Baja California. A composite SDM representing the range through time predicts two disjunct refugia, one in southern California encompassing the core of the species range and the other in the Sierra San Pedro Mártir of northern Baja California at the southern limit of the species range. Based on our spatial model, we would expect a pattern of high connectivity among populations within the northern refugium and, conversely, a pattern of isolation due to long‐term persistence of the Sierra San Pedro Mártir population. Our genetic results are consistent with these predictions based on the hypothetical refugia in that (i) historical measures of population connectivity among stable areas are correlated with gene flow estimates; and (ii) there is strong geographical structure between separate refugia. These results provide evidence for the role of recent climatic change in shaping patterns of population persistence and connectivity within the Transverse and Peninsular Ranges, an evolutionary hotspot.  相似文献   

14.
Understanding the processes underlying spatial patterns of genetic diversity and structure of natural populations is a central topic in evolutionary biogeography. In this study, we combine data on ancient and contemporary landscape composition to get a comprehensive view of the factors shaping genetic variation across the populations of the scrub‐legume grasshopper (Chorthippus binotatus binotatus) from the biogeographically complex region of southeast Iberia. First, we examined geographical patterns of genetic structure and employed an approximate Bayesian computation (ABC) approach to compare different plausible scenarios of population divergence. Second, we used a landscape genetic framework to test for the effects of (1) Late Miocene paleogeography, (2) Pleistocene climate fluctuations, and (3) contemporary topographic complexity on the spatial patterns of population genetic differentiation. Genetic structure and ABC analyses supported the presence of three genetic clusters and a sequential west‐to‐east splitting model that predated the last glacial maximum (LGM, c. 21 Kya). Landscape genetic analyses revealed that population genetic differentiation was primarily shaped by contemporary topographic complexity, but was not explained by any paleogeographic scenario or resistance distances based on climate suitability in the present or during the LGM. Overall, this study emphasizes the need of integrating information on ancient and contemporary landscape composition to get a comprehensive view of their relative importance to explain spatial patterns of genetic variation in organisms inhabiting regions with complex biogeographical histories.  相似文献   

15.
Questions: To what extent are the distributions of tropical rain forest tree ferns (Cyatheaceae) related to environmental variation, and is habitat specialization likely to play a role in their local coexistence? Location: Lowland rain forest at La Selva Biological Station, Costa Rica. Methods: Generalized linear (GLM) and generalized additive (GAM) logistic regression were used to model the incidence of four tree fern species in relation to environmental and neighbourhood variables in 1154 inventory plots regularly distributed across 6 km2 of old‐growth forest. Small and large size classes of the two most abundant species were modelled separately to see whether habitat associations change with ontogeny. Results: GLM and GAM model results were similar. All species had significant distributional biases with respect to micro‐habitat. Environmental variables describing soil variation were included in the models most often, followed by topographic and forest structural variables. The distributions of small individuals were more strongly related to environmental variation than those of larger individuals. Significant neighbourhood effects (spatial autocorrelation in intraspecific distributions and non‐random overlaps in the distributions of certain species pairs) were also identified. Overlaps between congeners did not differ from random, but there was a highly significant overlap in the distributions of the two most common species. Conclusions: Our results support the view that habitat specialization is an important determinant of where on the rain forest landscape tree ferns grow, especially for juvenile plants. However, other factors, such as dispersal limitation, may also contribute to their local coexistence.  相似文献   

16.
The alteration in palaeodrainage river connections has shaped patterns of speciation, genetic diversity and the geographical distribution of the species‐rich freshwater fauna of North America. The integration of ancestral range reconstruction methods and divergence time estimates provides an opportunity to infer palaeodrainage connectivity and test alternative palaeodrainage hypotheses. Members of the Orangethroat Darter clade, Ceasia, are endemic to southeastern North America and occur north and south of the Pleistocene glacial front, a distributional pattern that makes this clade of closely related species an ideal system to investigate the number and location of glacial refugia and compare alternative hypotheses regarding the proposed evolution of the Teays‐Mahomet palaeodrainage. This study utilized time‐calibrated mitochondrial and nuclear gene phylogenies and present‐day geographical distributions to investigate hypothesized Teays‐Mahomet River connections through time using a dispersal–extinction–cladogenesis (DEC) framework. Results of DEC ancestral area reconstructions indicate that the Teays‐Mahomet River was a key dispersal route between disjunct highland regions connecting the Mississippi River tributaries to the Old‐Ohio Drainage minimally at two separate occasions during the Pleistocene. There was a dynamic interplay between palaeodrainage connections through time and postglacial range expansion from three glacial refugia that shaped the current genetic structure and geographical distributions of the species that comprise Ceasia.  相似文献   

17.
The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full‐siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co‐evolution of host resistance and parasite virulence.  相似文献   

18.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration.  相似文献   

19.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

20.
Aim The aim of this study was to understand the roles of landscape features in shaping patterns of contemporary and historical genetic diversification among populations of the Andean tree frog (Hypsiboas andinus) across spatial scales. Location Andes mountains, north‐western Argentina, South America. Methods Mitochondrial DNA control region sequences were utilized to assess genetic differentiation among populations and calculate population pair‐wise genetic distances. Three models of movement, namely traditional straight‐line distance and two effective distances based on habitat classification, were examined to determine which of these explained the most variation in pair‐wise population genetic differentiation. The two habitat classifications were based on digital vegetation and hydrology layers that were generated from a 90‐m resolution digital elevation model (DEM) and known relationships between elevation and habitat. Mantel tests were conducted to test for correlations between geographic and genetic distance matrices and to estimate the percentage variation explained by each type of geographic distance. To investigate the location of possible barriers to gene flow, we used Monmonier’s maximum difference algorithm as implemented in barrier 2.2. Results At both geographic scales, effective distances explained more variation in genetic differentiation than did straight‐line distance. The least‐cost distances based on the simple classification performed better than the more detailed habitat classification. We controlled for the effects of historical range fragmentation determined from previous nested clade analyses, and therefore evaluated the effect of different distances on the genetic variation attributable to more recent factors. Effective distances identified populations that were highly divergent as a result of isolation in unsuitable habitats. The proposed locations of barriers to gene flow identified using Monmonier’s maximum difference algorithm corresponded well with earlier analyses and supported findings from our partial Mantel tests. Main conclusions Our results indicate that landscape features have been important in both historical and contemporary genetic structuring of populations of H. andinus at both large and small spatial scales. A landscape genetic perspective offers novel insights not provided by traditional phylogeographic studies: (1) effective distances can better explain patterns of differentiation in populations, especially in heterogeneous landscapes where barriers to dispersal may be common; and (2) least‐cost path analysis can help to identify corridors of movement between populations that are biologically more realistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号