共查询到20条相似文献,搜索用时 0 毫秒
1.
Albin Lobo Ole Kim Hansen Jon Kehlet Hansen Eva Ortvald Erichsen Birgitte Jacobsen Erik Dahl Kjær 《Ecology and evolution》2018,8(12):5968-5976
We assessed the level of geographic differentiation of Tilia cordata in Denmark based on tests of 91 trees selected from 12 isolated populations. We used quantitative analysis of spring phenology and population genetic analysis based on SSR markers to infer the likely historical genetic processes within and among populations. High genetic variation within and among populations was observed in spring phenology, which correlated with spring temperatures at the origin of the tested T. cordata trees. The population genetic analysis revealed significant differentiation among the populations, but with no clear sign of isolation by distance. We infer the findings as indications of ongoing fine scale selection in favor of local growth conditions made possible by limited gene flow among the small and fragmented populations. This hypothesis fits well with reports of limited fruiting in the investigated Danish T. cordata populations, while the species is known for its ability to propagate vegetatively by root suckers. Our results suggest that both divergent selection and genetic drift may have played important roles in forming the genetic patterns of T. cordata at its northern distribution limit. However, we also speculate that epigenetic mechanism arising from the original population environment could have created similar patterns in regulating the spring phenology. 相似文献
2.
Noninvasive sampling, of faeces and hair for example, has enabled many genetic studies of wildlife populations. However, two prevailing problems common to these studies are small sample sizes and high genotyping errors. The first problem stems from the difficulty in collecting noninvasive samples, particularly from populations of rare or elusive species, and the second is caused by the low quantity and quality of DNA extracted from a noninvasive sample. A common question is therefore whether noninvasive sampling provides sufficient information for the analyses commonly conducted in conservation genetics studies. Here, we conducted a simulation study to investigate the effect of small sample sizes and genotyping errors on the precision and accuracy of the most commonly estimated genetic parameters. Our results indicate that small sample sizes cause little bias in measures of expected heterozygosity, pairwise FST and population structure, but a large downward bias in estimates of allelic diversity. Allelic dropouts and false alleles had a much smaller effect than missing data, which effectively reduces sample size further. Overall, reasonable estimates of genetic variation and population subdivision are obtainable from noninvasive samples as long as error rates are kept below a frequency of 0.2. Similarly, unbiased estimates of population clustering can be made with genotyping error rates below 0.5 when the populations are highly differentiated. These results provide a useful guide for researchers faced with studying the conservation genetics of small, endangered populations from noninvasive samples. 相似文献
3.
Michael C. Whitlock 《Molecular ecology》2015,24(14):3513-3514
FST (as well as related measures such as GST) has long been used both as a measure of the relative amount of genetic variation between populations and as an indicator of the amount of gene flow among populations. Unfortunately, FST and its clones are also sensitive to mutation, particularly when the mutation rate per locus is greater than the migration rate among populations. Relatively high mutation rates cause estimates of FST and GST to be much lower than researchers sometimes expect, when migration rates are low in the studied species. Several recent suggestions for dealing with this problem have been unsatisfactory for one reason or another, and no general solution exists (if we are not to abandon these otherwise useful measures of differentiation). In an important article in this issue, Jinliang Wang (2015) shows that it is possible to identify whether the genetic markers in a given study are likely to give estimates of FST that are strongly affected by mutation. The proposed test is simple and elegant, and with it, molecular ecologists can determine whether the FST from their makers can be depended on for further inference about their species’ genome and the demographic forces which shaped its patterns. 相似文献
4.
S. Jha 《Molecular ecology》2015,24(5):993-1006
Much of the world's terrestrial landscapes are being altered by humans in the form of agriculture, urbanization and pastoral systems, with major implications for biodiversity. Bumble bees are one of the most effective pollinators in both natural and cultivated landscapes, but are often the first to be extirpated in human‐altered habitats. Yet, little is known about the role of natural and human‐altered habitats in promoting or limiting bumble bee gene flow. In this study, I closely examine the genetic structure of the yellow‐faced bumble bee, Bombus vosnesenskii, across the southwestern US coast and find strong evidence that natural oceanic barriers, as well as contemporary human‐altered habitats, limit bee gene flow. Heterozygosity and allelic richness were lower in island populations, while private allelic richness was higher in island populations compared to mainland populations. Genetic differentiation, measured for three indices across the 1000 km study region, was significantly greater than the null expectation (FST = 0.041, F’ST = 0.044 and Dest = 0.155) and correlated with geographic distance. Furthermore, genetic differentiation patterns were most strongly correlated with contemporary (2011) not past (2006, 2001) resistance maps calibrated for high dispersal limitation over oceans, impervious habitat and croplands. Despite the incorporation of dramatic elevation gradients, the analyses reveal that oceans and contemporary human land use, not mountains, are the primary dispersal barriers for B. vosnesenskii gene flow. These findings reinforce the importance of maintaining corridors of suitable habitat across the distribution range of native pollinators to promote their persistence and safeguard their ability to provide essential pollination services. 相似文献
5.
Stéphane De Mita Anne‐Céline Thuillet Laurène Gay Nourollah Ahmadi Stéphanie Manel Joëlle Ronfort Yves Vigouroux 《Molecular ecology》2013,22(5):1383-1399
Thanks to genome‐scale diversity data, present‐day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up‐to‐date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self‐fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype–environment correlations and five designed to detect adaptive differentiation (based on FST or similar measures). We show that genotype–environment correlation methods have substantially more power to detect selection than differentiation‐based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype–environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations. 相似文献
6.
QST, a measure of quantitative genetic differentiation among populations, is an index that can suggest local adaptation if QST for a trait is sufficiently larger than the mean FST of neutral genetic markers. A previous method by Whitlock and Guillaume derived a simulation resampling approach to statistically test for a difference between QST and FST, but that method is limited to balanced data sets with offspring related as half‐sibs through shared fathers. We extend this approach (i) to allow for a model more suitable for some plant populations or breeding designs in which offspring are related through mothers (assuming independent fathers for each offspring; half‐sibs by dam); and (ii) by explicitly allowing for unbalanced data sets. The resulting approach is made available through the R package QstFstComp. 相似文献
7.
The metaphor of ‘genomic islands of speciation’ was first used to describe heterogeneous differentiation among loci between the genomes of closely related species. The biological model proposed to explain these differences was that the regions showing high levels of differentiation were resistant to gene flow between species, while the remainder of the genome was being homogenized by gene flow and consequently showed lower levels of differentiation. However, the conditions under which such differentiation can occur at multiple unlinked loci are restrictive; additionally, essentially, all previous analyses have been carried out using relative measures of divergence, which can be misleading when regions with different levels of recombination are compared. Here, we test the model of differential gene flow by asking whether absolute divergence is also higher in the previously identified ‘islands’. Using five species pairs for which full sequence data are available, we find that absolute measures of divergence are not higher in genomic islands. Instead, in all cases examined, we find reduced diversity in these regions, a consequence of which is that relative measures of divergence are abnormally high. These data therefore do not support a model of differential gene flow among loci, although islands of relative divergence may represent loci involved in local adaptation. Simulations using the program IMa2 further suggest that inferences of any gene flow may be incorrect in many comparisons. We instead present an alternative explanation for heterogeneous patterns of differentiation, one in which postspeciation selection generates patterns consistent with multiple aspects of the data. 相似文献
8.
9.
Mathew Seymour Katja Räsänen Rolf Holderegger Bjarni K. Kristjánsson 《Ecology and evolution》2013,3(3):492-502
Neutral genetic structure of natural populations is primarily influenced by migration (the movement of individuals and, subsequently, their genes) and drift (the statistical chance of losing genetic diversity over time). Migration between populations is influenced by several factors, including individual behavior, physical barriers, and environmental heterogeneity among populations. However, drift is expected to be stronger in populations with low immigration rate and small effective population size. With the technological advancement in geological information systems and spatial analysis tools, landscape genetics now allows the development of realistic migration models and increased insight to important processes influencing diversity of natural populations. In this study, we investigated the relationship between landscape connectivity and genetic distance of threespine stickleback (Gasterosteus aculeatus) inhabiting a pond complex in Belgjarskógur, Northeast Iceland. We used two landscape genetic approaches (i.e., least-cost-path and isolation-by-resistance) and asked whether gene flow, as measured by genetic distance, was more strongly associated with Euclidean distance (isolation-by-distance) or with landscape connectivity provided by areas prone to flooding (as indicated by Carex sp. cover)? We found substantial genetic structure across the study area, with pairwise genetic distances among populations (DPS) ranging from 0.118 to 0.488. Genetic distances among populations were more strongly correlated with least-cost-path and isolation-by-resistance than with Euclidean distance, whereas the relative contribution of isolation-by-resistance and Euclidian distance could not be disentangled. These results indicate that migration among stickleback populations occurs via periodically flooded areas. Overall, this study highlights the importance of transient landscape elements influencing migration and genetic structure of populations at small spatial scales. 相似文献
10.
J. Wang 《Molecular ecology》2015,24(14):3546-3558
The widely applied genetic differentiation statistics FST and GST have recently been criticized for underestimating differentiation when applied to highly polymorphic markers such as microsatellites. New statistics claimed to be unaffected by marker polymorphisms have been proposed and advocated to replace the traditional FST and GST. This study shows that GST gives accurate estimates and underestimates of differentiation when demographic factors are more and less important than mutations, respectively. In the former case, all markers, regardless of diversity (HS), have the same GST value in expectation and thus give replicated estimates of differentiation. In the latter case, markers of higher HS have lower GST values, resulting in a negative, roughly linear correlation between GST and HS across loci. I propose that the correlation coefficient between GST and HS across loci, rGH, can be used to distinguish the two cases and to detect mutational effects on GST. A highly negative and significant rGH, when coupled with highly variable GST values among loci, would reveal that marker GST values are affected substantially by mutations and marker diversity, underestimate population differentiation, and are not comparable among studies, species and markers. Simulated and empirical data sets are used to check the power and statistical behaviour, and to demonstrate the usefulness of the correlation analysis. 相似文献
11.
Althea A. ArchMiller Eric F. Bauer Rebecca E. Koch Bhagya K. Wijayawardena Ammu Anil Jack J. Kottwitz Amelia S. Munsterman Alan E. Wilson 《Molecular ecology》2015,24(16):4042-4051
Meta‐analysis, the statistical synthesis of pertinent literature to develop evidence‐based conclusions, is relatively new to the field of molecular ecology, with the first meta‐analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta‐analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta‐analyses previously published in this journal. We also provide a brief overview of the many components required for meta‐analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta‐analysis. We performed a literature review to identify articles published as ‘meta‐analyses’ in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta‐analyses published in Molecular Ecology have the potential to set the standard for meta‐analyses in other journals. We found that while many of these reviewed articles were strong meta‐analyses, others failed to follow standard meta‐analytical techniques. One of these unsatisfactory meta‐analyses was in fact a secondary analysis. Other studies attempted meta‐analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta‐analysis. By drawing attention to the inconsistency of studies labelled as meta‐analyses, we emphasize the importance of understanding the components of traditional meta‐analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. 相似文献
12.
Larry J. Leamy Cheng‐Ruei Lee Antonio J. Manzaneda Kasavajhala Prasad Thomas Mitchell‐Olds Bao‐Hua Song 《Ecology and evolution》2014,4(16):3175-3186
Many biological species are threatened with extinction because of a number of factors such as climate change and habitat loss, and their preservation depends on an accurate understanding of the extent of their genetic variability within and among populations. In this study, we assessed the genetic divergence of five quantitative traits in 10 populations of an endangered cruciferous species, Boechera fecunda, found in only several populations in each of two geographic regions (WEST and EAST) in southwestern Montana. We analyzed variation in quantitative traits, neutral molecular markers, and environmental factors and provided evidence that despite the restricted geographical distribution of this species, it exhibits a high level of genetic variation and regional adaptation. Conservation efforts therefore should be directed to the preservation of populations in each of these two regions without attempting transplantation between regions. Heritabilities and genetic coefficients of variation estimated from nested ANOVAs were generally high for leaf and rosette traits, although lower (and not significantly different from 0) for water‐use efficiency. Measures of quantitative genetic differentiation, QST, were calculated for each trait from each pair of populations. For three of the five traits, these values were significantly higher between regions compared with those within regions (after adjustment for neutral genetic variation, FST). This suggested that natural selection has played an important role in producing regional divergence in this species. Our analysis also revealed that the B. fecunda populations appear to be locally adapted due, at least in part, to differences in environmental conditions in the EAST and WEST regions. 相似文献
13.
Statistical Analysis of Mixed‐Ploidy Populations (StAMPP) is a freely available R package for calculation of population structure and differentiation based on single nucleotide polymorphism (SNP) genotype data from populations of any ploidy level, and/or mixed‐ploidy levels. StAMPP provides an advance on previous similar software packages, due to an ability to calculate pairwise FST values along with confidence intervals, Nei's genetic distance and genomic relationship matrixes from data sets of mixed‐ploidy level. The software code is designed to efficiently handle analysis of large genotypic data sets that are typically generated by high‐throughput genotyping platforms. Population differentiation studies using StAMPP are broadly applicable to studies of molecular ecology and conservation genetics, as well as animal and plant breeding. 相似文献
14.
Ashton KG 《Journal of evolutionary biology》2004,17(5):1157-1161
Phylogenetic comparative methods have become a standard statistical approach for analysing interspecific data, under the assumption that traits of species are more similar than expected by chance (i.e. phylogenetic signal is present). Here I test for phylogenetic signal in intraspecific body size datasets to evaluate whether intraspecific datasets may require phylogenetic analysis. I also compare amounts of phylogenetic signal in intraspecific and interspecific body size datasets. Some intraspecific body size datasets contain significant phylogenetic signal. Detection of significant phylogenetic signal was dependant upon the number of populations (n) and the amount of phylogenetic signal (K) for a given dataset. Amounts of phylogenetic signal do not differ between intraspecific and interspecific datasets. Further, relationships between significance of phylogenetic signal and sample size and amount of phylogenetic signal are similar for intraspecific and interspecific datasets. Thus, intraspecific body size datasets are similar to interspecific body size datasets with respect to phylogenetic signal. Whether these results are general for all characters requires further study. 相似文献
15.
Potential declines in native pollinator communities and increased reliance on pollinator‐dependent crops have raised concerns about native pollinator conservation and dispersal across human‐altered landscapes. Bumble bees are one of the most effective native pollinators and are often the first to be extirpated in human‐altered habitats, yet little is known about how bumble bees move across fine spatial scales and what landscapes promote or limit their gene flow. In this study, we examine regional genetic differentiation and fine‐scale relatedness patterns of the yellow‐faced bumble bee, Bombus vosnesenskii, to investigate how current and historic habitat composition impact gene flow. We conducted our study across a landscape mosaic of natural, agricultural and urban/suburban habitats, and we show that B. vosnesenskii exhibits low but significant levels of differentiation across the study system (FST = 0.019, Dest = 0.049). Most importantly, we reveal significant relationships between pairwise FST and resistance models created from contemporary land use maps. Specifically, B. vosnesenskii gene flow is most limited by commercial, industrial and transportation‐related impervious cover. Finally, our fine‐scale analysis reveals significant but declining relatedness between individuals at the 1–9 km spatial scale, most likely due to local queen dispersal. Overall, our results indicate that B. vosnesenskii exhibits considerable local dispersal and that regional gene flow is significantly limited by impervious cover associated with urbanization. 相似文献
16.
Emma L. Berdan Camila J. Mazzoni Isabelle Waurick Johannes T. Roehr Frieder Mayer 《Molecular ecology》2015,24(15):3918-3930
Understanding the genetics of speciation and the processes that drive it is a central goal of evolutionary biology. Grasshoppers of the Chorthippus species group differ strongly in calling song (and corresponding female preferences) but are exceedingly similar in other characteristics such as morphology. Here, we performed a population genomic scan on three Chorthippus species (Chorthippus biguttulus, C. mollis and C. brunneus) to gain insight into the genes and processes involved in divergence and speciation in this group. Using an RNA‐seq approach, we examined functional variation between the species by calling SNPs for each of the three species pairs and using FST‐based approaches to identify outliers. We found approximately 1% of SNPs in each comparison to be outliers. Between 37% and 40% of these outliers were nonsynonymous SNPs (as opposed to a global level of 17%) indicating that we recovered loci under selection. Among the outliers were several genes that may be involved in song production and hearing as well as genes involved in other traits such as food preferences and metabolism. Differences in food preferences between species were confirmed with a behavioural experiment. This indicates that multiple phenotypic differences implicating multiple evolutionary processes (sexual selection and natural selection) are present between the species. 相似文献
17.
Limited dispersal is commonly used to explain differences in diversification rates. An obvious but unexplored factor affecting dispersal is the mode of locomotion used by animals. Whether individuals walk, swim or fly can dictate the type and severity of geographical barriers to dispersal, and determine the general range over which genetic differentiation might occur. We collated information on locomotion mode and genetic differentiation (FST) among vertebrate populations from over 400 published articles. Our results showed that vertebrate species that walk tend to have higher genetic differentiation among populations than species that swim or fly. Within species that swim, vertebrates in freshwater systems have higher genetic differentiation than those in marine systems, which is consistent with the higher number of species in freshwater environments. These results show that locomotion mode can impact gene flow among populations, supporting at a broad‐scale what has previously been proposed at smaller taxonomical scales. 相似文献
18.
Z. Manzari H. Mehrabani‐Yeganeh A. Nejati‐Javaremi M. H. Moradi M. Gholizadeh 《Animal genetics》2019,50(3):298-302
The objective of genome mapping is to achieve valuable insight into the connection between gene variants (genotype) and observed traits (phenotype). Part of that objective is to understand the selective forces that have operated on a population. Finding links between genotype–phenotype changes makes it possible to identify selective sweeps by patterns of genetic variation and linkage disequilibrium. Based on Illumina 50KSNP chip data, two approaches, XP‐EHH (cross‐population extend haplotype homozygosity) and FST (fixation index), were carried out in this research to identify selective sweeps in the genome of three Iranian local sheep breeds: Baluchi (n = 86), Lori‐Bakhtiari (n = 45) and Zel (n = 45). Using both methods, 93 candidate genomic regions were identified as harboring putative selective sweeps. Bioinformatics analysis of the genomic regions showed that signatures of selection related to multiple candidate genes, such as HOXB9, HOXB13, ACAN, NPR2, TRIL, AOX1, CSF2, GHR, TNS2, SPAG8, HINT2, ALS2, AAAS, RARG, SYCP2, CAV1, PPP1R3D, PLA2G7, TTLL7 and C20orf10, that play a role in skeletal system and tail, sugar and energy metabolisms, growth, reproduction, immune and nervous system traits. Our findings indicated diverse genomic selection during the domestication of Iranian sheep breeds. 相似文献
19.
Diane Leforestier Elisa Ravon Hlne Muranty Amandine Cornille Christophe Lemaire Tatiana Giraud Charles‐Eric Durel Antoine Branca 《Evolutionary Applications》2015,8(7):650-661
Unraveling the genomic processes at play during variety diversification is of fundamental interest for understanding evolution, but also of applied interest in crop science. It can indeed provide knowledge on the genetic bases of traits for crop improvement and germplasm diversity management. Apple is one of the most important fruit crops in temperate regions, having both great economic and cultural values. Sweet dessert apples are used for direct consumption, while bitter cider apples are used to produce cider. Several important traits are known to differentiate the two variety types, in particular fruit size, biennial versus annual fruit bearing, and bitterness, caused by a higher content in polyphenols. Here, we used an Illumina 8k SNP chip on two core collections, of 48 dessert and 48 cider apples, respectively, for identifying genomic regions responsible for the differences between cider and dessert apples. The genome‐wide level of genetic differentiation between cider and dessert apples was low, although 17 candidate regions showed signatures of divergent selection, displaying either outlier FST values or significant association with phenotypic traits (bitter versus sweet fruits). These candidate regions encompassed 420 genes involved in a variety of functions and metabolic pathways, including several colocalizations with QTLs for polyphenol compounds. 相似文献
20.
Wei Hu Wenqiang Qin Yuying Jin Peng Wang Qingdi Yan Fuguang Li Zhaoen Yang 《Plant biotechnology journal》2020,18(10):2081-2095
Extrafloral nectaries are a defence trait that plays important roles in plant–animal interactions. Gossypium species are characterized by cellular grooves in leaf midribs that secret large amounts of nectar. Here, with a panel of 215 G. arboreum accessions, we compared extrafloral nectaries to nectariless accessions to identify a region of Chr12 that showed strong differentiation and overlapped with signals from GWAS of nectaries. Fine mapping of an F2 population identified GaNEC1, encoding a PB1 domain‐containing protein, as a positive regulator of nectary formation. An InDel, encoding a five amino acid deletion, together with a nonsynonymous substitution, was predicted to cause 3D structural changes in GaNEC1 protein that could confer the nectariless phenotype. mRNA‐Seq analysis showed that JA‐related genes are up‐regulated and cell wall‐related genes are down‐regulated in the nectary. Silencing of GaNEC1 led to a smaller size of foliar nectary phenotype. Metabolomics analysis identified more than 400 metabolites in nectar, including expected saccharides and amino acids. The identification of GaNEC1 helps establish the network regulating nectary formation and nectar secretion, and has implications for understanding the production of secondary metabolites in nectar. Our results will deepen our understanding of plant–mutualism co‐evolution and interactions, and will enable utilization of a plant defence trait in cotton breeding efforts. 相似文献