首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review focuses on the genetic features of psoriatic arthritis (PsA) and their relationship to phenotypic heterogeneity in the disease, and addresses three questions: what do the recent studies on human leukocyte antigen (HLA) tell us about the genetic relationship between cutaneous psoriasis (PsO) and PsA – that is, is PsO a unitary phenotype; is PsA a genetically heterogeneous or homogeneous entity; and do the genetic factors implicated in determining susceptibility to PsA predict clinical phenotype? We first discuss the results from comparing the HLA typing of two PsO cohorts: one cohort providing the dermatologic perspective, consisting of patients with PsO without evidence of arthritic disease; and the second cohort providing the rheumatologic perspective, consisting of patients with PsA. We show that these two cohorts differ considerably in their predominant HLA alleles, indicating the heterogeneity of the overall PsO phenotype. Moreover, the genotype of patients in the PsA cohort was shown to be heterogeneous with significant elevations in the frequency of haplotypes containing HLA-B*08, HLA-C*06:02, HLA-B*27, HLA-B*38 and HLA-B*39. Because different genetic susceptibility genes imply different disease mechanisms, and possibly different clinical courses and therapeutic responses, we then review the evidence for a phenotypic difference among patients with PsA who have inherited different HLA alleles. We provide evidence that different alleles and, more importantly, different haplotypes implicated in determining PsA susceptibility are associated with different phenotypic characteristics that appear to be subphenotypes. The implication of these findings for the overall pathophysiologic mechanisms involved in PsA is discussed with specific reference to their bearing on the discussion of whether PsA is conceptualised as an autoimmune process or one that is based on entheseal responses.  相似文献   

2.
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.  相似文献   

3.
The canonical Wnt/β‐catenin signalling pathway and autophagy play critical roles in cancer progression. However, the role of Wnt‐mediated autophagy in cancer radioresistance remains unclear. In this study, we found that irradiation activated the Wnt/β‐catenin and autophagic signalling pathways in squamous cell carcinoma of the head and neck (SCCHN). Wnt3a is a classical ligand that activated the Wnt/β‐catenin signalling pathway, induced autophagy and decreased the sensitivity of SCCHN to irradiation both in vitro and in vivo. Further mechanistic analysis revealed that Wnt3a promoted SCCHN radioresistance via protective autophagy. Finally, expression of the Wnt3a protein was elevated in both SCCHN tissues and patients' serum. Patients showing high expression of Wnt3a displayed a worse prognosis. Taken together, our study indicates that both the canonical Wnt and autophagic signalling pathways are valuable targets for sensitizing SCCHN to irradiation.  相似文献   

4.
Wnt5a regulates multiple intracellular signalling cascades, but how Wnt5a determines the specificity of these pathways is not well understood. This study examined whether the internalization of Wnt receptors affects the ability of Wnt5a to regulate its signalling pathways. Wnt5a activated Rac in the β‐catenin‐independent pathway, and Frizzled2 (Fz2) and Ror1 or Ror2 were required for this action. Fz2 was internalized through a clathrin‐mediated route in response to Wnt5a, and inhibition of clathrin‐dependent internalization suppressed the ability of Wnt5a to activate Rac. As another action of Wnt5a, it inhibited Wnt3a‐dependent lipoprotein receptor‐related protein 6 (LRP6) phosphorylation and β‐catenin accumulation. Wnt3a‐dependent phosphorylation of LRP6 was enhanced in Wnt5a knockout embryonic fibroblasts. Fz2 was also required for the Wnt3a‐dependent accumulation of β‐catenin, and Wnt5a competed with Wnt3a for binding to Fz2 in vitro and in intact cells, thereby inhibiting the β‐catenin pathway. This inhibitory action of Wnt5a was not affected by the impairment of clathrin‐dependent internalization. These results suggest that Wnt5a regulates distinct pathways through receptor internalization‐dependent and ‐independent mechanisms.  相似文献   

5.
Toll-like receptors (TLRs) recognize Mycobacterium tuberculosis (Mtb) or Mtb components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signalling cascades involved in the TLR-initiated immune response to mycobacterial infection. Although both TLR2 and TLR4 have been implicated in host interactions with Mtb, the relationship between specific mycobacterial molecules and various signal transduction pathways is not well understood. This review will discuss recent studies indicating critical roles for mycobacteria and mycobacterial components in regulation of mitogen-activated protein kinases and related signal transduction pathways that govern the outcome of infection and antibacterial defence. To better understand the roles of infection-induced signalling cascades in molecular pathogenesis, future studies are needed to clarify mechanisms that integrate the multiple signalling pathways that are activated by engagement of TLRs by both individual mycobacterial molecules and whole mycobacteria. These efforts will allow for the development of novel diagnostic and therapeutic modalities for tuberculosis that targets the intracellular signalling pathways permitting the replication of this nefarious pathogen.  相似文献   

6.
Rheumatoid arthritis, a disabling autoimmune disease, is associated with altered gene expression in circulating immune cells and synovial tissues. Accumulating evidence has suggested that long non‐coding RNAs (lncRNAs), which modulate gene expression through multiple mechanisms, are important molecules involved in immune and inflammatory pathways. Importantly, many studies have reported that lncRNAs can be utilized as biomarkers for disease diagnosis and prognostication. Recently, dysregulation of lncRNAs in rheumatoid arthritis and other autoimmune diseases has been revealed. Experimental studies also confirmed their crosstalk with matrix metalloproteinases, nuclear factor‐κB signalling and T‐cell response pertinent to autoimmunity and inflammation. Circulating lncRNAs, such as HOTAIR, differentiated patients with rheumatoid arthritis from healthy subjects. Taken together, lncRNAs are good candidates as biomarkers and therapeutic targets in rheumatoid arthritis. Further investigation on in vivo delivery of these regulatory molecules and large‐cohort validation of their clinical applicability may be useful.  相似文献   

7.
An arrow for wingless to take-off   总被引:9,自引:0,他引:9  
The Wnt family of secreted glycoproteins is involved in the regulation of diverse developmental processes. The classical Wnt/beta-catenin pathway has been thoroughly investigated resulting in the identification of a plethora of components involved in the activation of beta-catenin target genes. Moreover, two additional Wnt-triggered pathways have been identified. These various signalling cascades require at least one component that confers signalling specificity. This function is fulfilled at least in part by the Wnt receptor Frizzled. The recent identification of a potential Frizzled co-receptor, an LDL-receptor-related-protein (LRP), sheds more light on Wnt-signal transduction specificity and promises more exciting revelations.  相似文献   

8.
Rheumatoid arthritis exhibits diurnal variation in symptoms, with patients suffering with increased painful joint stiffness in the early morning. This correlates with an early morning rise in circulating levels of pro-inflammatory cytokines, such as interleukin-6. This temporal variation in disease pathology is directed by the circadian clock, both at a systemic level, through signalling pathways derived in the central clock, and at a local level by autonomous clocks found within inflammatory organs and cells. Indeed, many cellular components of the immune system, which are involved in the pathogenesis of rheumatoid arthritis, possess independent clocks that facilitate temporal gating of their functions. Furthermore, the circadian clock regulates the expression and activity of several genes and proteins that have demonstrated roles in progression of this autoimmune disease. These include a number of nuclear receptors and also fat-derived adipokines. Employing the knowledge we have about how the inflammatory response is regulated by the clock will facilitate the development of chronotherapy regimens to improve the efficacy of current treatment strategies. Furthermore, a full understanding of the mechanisms by which the clock couples to the immune system may provide novel therapeutic targets for the treatment of this debilitating disease.  相似文献   

9.
10.
Wnts compromise a large family of secreted and hydrophobic glycoproteins that control a variety of developmental and adult processes in all metazoan organisms. Recent advances in the field of Wnt signalling have revealed that Wnt activates multiple intracellular cascades, resulting in the regulation of cellular proliferation, differentiation, migration and polarity. However, it is not clear how Wnt activates these pathways after it binds to the receptors. It has been shown that Wnt and its antagonist Dickkopf are internalized with their receptors. This review highlights distinct endocytic pathways correlate with specificity of Wnt signalling events.  相似文献   

11.
12.
13.
14.
15.
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions.  相似文献   

16.
17.
18.
GSK‐3β is a key molecule in several signalling pathways, including the Wnt/β‐catenin signalling pathway. There is increasing evidence suggesting Wnt/β‐catenin signalling is involved in the neural differentiation of embryonic, somatic and neural stem cells. However, a large body of evidence indicates that this pathway maintains stem cells in a proliferative state. To address this controversy, we have investigated whether the Wnt/β‐catenin pathway is present and involved in the neural differentiation of newly introduced USSCs (unrestricted somatic stem cells). Our results indicate that the components of Wnt/β‐catenin signalling are present in undifferentiated USSCs. We also show that the treatment of neurally induced USSCs with BIO (6‐bromoindirubin‐3′‐oxime), a specific GSK‐3β inhibitor and Wnt activator, for 5 and 10 days results in increased expression of a general neuronal marker (β‐tubulin III). Moreover, the expression of pGSK‐3β and stabilized β‐catenin increased by BIO in neurally induced USSCs, indicates that the Wnt pathway is activated and functional in these cells. Thus, inhibition of GSK‐3β in USSCs enhances their neural differentiation, which suggests a positive role of the Wnt/β‐catenin signalling pathway towards neural fate.  相似文献   

19.
Psoriatic arthritis (PsA) is a chronic inflammatory arthropathy characterized by the association of arthritis and psoriasis (Ps). The precise etiology of PsA is unknown, but epidemiological studies supported the existence of a genetic component for the disease. Here we report an association study on a large PsA Italian cohort for DNA variants recently reported as associated alleles at PSORS2 (17q25) in Ps cohorts from the US. We focused on discovering a possible involvement of PSORS2 associated SNPs in pathogenesis of PsA. We selected two SNPs (rs7420, rs734232) within the proximal peak and two SNPs (rs869190 and rs1561946) within distal peak of PSORS2. Our results ruled out PSORS2 alleles as susceptibility factors in arthritis psoriatic patients of Italian origin and suggested that previous linkage signal reported for chromosome 17q25 should be independent on the presence of PsA.  相似文献   

20.

Background

Synovial fluid (SF) is a dynamic reservoir for proteins originating from the synovial membrane, cartilage, and plasma, and may therefore reflect the pathophysiological conditions that give rise to arthritis. Our goal was to identify and quantify protein mediators of psoriatic arthritis (PsA) in SF.

Methods

Age and gender-matched pooled SF samples from 10 PsA and 10 controls [early osteoarthritis (OA)], were subjected to label-free quantitative proteomics using liquid chromatography coupled to mass spectrometry (LC-MS/MS), to identify differentially expressed proteins based on the ratios of the extracted ion current of each protein between the two groups. Pathway analysis and public database searches were conducted to ensure these proteins held relevance to PsA. Multiplexed selected reaction monitoring (SRM) assays were then utilized to confirm the elevated proteins in the discovery samples and in an independent set of samples from patients with PsA and controls.

Results

We determined that 137 proteins were differentially expressed between PsA and control SF, and 44 were upregulated. The pathways associated with these proteins were acute-phase response signalling, granulocyte adhesion and diapedesis, and production of nitric oxide and reactive oxygen species in macrophages. The expression of 12 proteins was subsequently quantified using SRM assays.

Conclusions

Our in-depth proteomic analysis of the PSA SF proteome identified 12 proteins which were significantly elevated in PsA SF compared to early OA SF. These proteins may be linked to the pathogenesis of PsA, as well serve as putative biomarkers and/or therapeutic targets for this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号