首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
Tumour necrosis factor (TNF)‐α has been considered to induce ischaemia‐reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor‐γ co‐activator (PGC)‐1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC‐1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF‐α had increased TNF‐α levels and resulted in down‐regulation of PGC‐1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF‐α by neutralizing antibody reversed PGC‐1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC‐1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF‐α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral‐Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF‐α. However, there was no up‐regulation of PGC‐1α. These findings suggest that PGC‐1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF‐α‐induced hepatic IRI. Inhibition of the TNF‐α or PGC‐1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI.  相似文献   

2.
3.
Age‐related impairment of muscle function severely affects the health of an increasing elderly population. While causality and the underlying mechanisms remain poorly understood, exercise is an efficient intervention to blunt these aging effects. We thus investigated the role of the peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α), a potent regulator of mitochondrial function and exercise adaptation, in skeletal muscle during aging. We demonstrate that PGC‐1α overexpression improves mitochondrial dynamics and calcium buffering in an estrogen‐related receptor α‐dependent manner. Moreover, we show that sarcoplasmic reticulum stress is attenuated by PGC‐1α. As a result, PGC‐1α prevents tubular aggregate formation and cell death pathway activation in old muscle. Similarly, the pro‐apoptotic effects of ceramide and thapsigargin were blunted by PGC‐1α in muscle cells. Accordingly, mice with muscle‐specific gain‐of‐function and loss‐of‐function of PGC‐1α exhibit a delayed and premature aging phenotype, respectively. Together, our data reveal a key protective effect of PGC‐1α on muscle function and overall health span in aging.  相似文献   

4.
Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD‐1) are immune checkpoint proteins expressed in T cells. Although CTLA4 expression was found in multiple tumours including non‐small cell lung cancer (NSCLC) tissues and cells, its function in tumour cells is unknown. Recently, PD‐1 was found to be expressed in melanoma cells and to promote tumorigenesis. We found that CTLA4 was expressed in a subset of NSCLC cell lines and in a subgroup of cancer cells within the lung cancer tissues. We further found that in NSCLC cells, anti‐CTLA4 antibody can induce PD‐L1 expression, which is mediated by CTLA4 and the EGFR pathway involving phosphorylation of MEK and ERK. In CTLA4 knockout cells, EGFR knockout cells or in the presence of an EGFR tyrosine kinase inhibitor, anti‐CTLA4 antibody was not able to induce PD‐L1 expression in NSCLC cells. Moreover, anti‐CTLA4 antibody promoted NSCLC cell proliferation in vitro and tumour growth in vivo in the absence of adaptive immunity. These results suggest that tumour cell‐intrinsic CTLA4 can regulate PD‐L1 expression and cell proliferation, and that anti‐CTLA4 antibody, by binding to the tumour cell‐intrinsic CTLA4, may result in the activation of the EGFR pathway in cancer cells.  相似文献   

5.
The age‐related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age‐associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC‐1α in the therapeutic effect of exercise in aging. Intriguingly, PGC‐1α muscle‐specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging‐related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC‐1α modulation. Surprisingly, we discovered that muscle PGC‐1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC‐1α.  相似文献   

6.
7.
8.
9.
Abnormal metabolism of tumour cells is closely related to the occurrence and development of breast cancer, during which the expression of NF‐E2‐related factor 2 (Nrf2) is of great significance. Metastatic breast cancer is one of the most common causes of cancer death worldwide; however, the molecular mechanism underlying breast cancer metastasis remains unknown. In this study, we found that the overexpression of Nrf2 promoted proliferation and migration of breast cancers cells. Inhibition of Nrf2 and overexpression of Kelch‐like ECH‐associated protein 1 (Keap1) reduced the expression of glucose‐6‐phosphate dehydrogenase (G6PD) and transketolase of pentose phosphate pathway, and overexpression of Nrf2 and knockdown of Keap1 had opposite effects. Our results further showed that the overexpression of Nrf2 promoted the expression of G6PD and Hypoxia‐inducing factor 1α (HIF‐1α) in MCF‐7 and MDA‐MB‐231 cells. Overexpression of Nrf2 up‐regulated the expression of Notch1 via G6PD/HIF‐1α pathway. Notch signalling pathway affected the proliferation of breast cancer by affecting its downstream gene HES‐1, and regulated the migration of breast cancer cells by affecting the expression of EMT pathway. The results suggest that Nrf2 is a potential molecular target for the treatment of breast cancer and targeting Notch1 signalling pathway may provide a promising strategy for the treatment of Nrf2‐driven breast cancer metastasis.  相似文献   

10.
Chemoresistance is a critical challenge in the clinical treatment of triple‐negative breast cancer (TNBC). It has been well documented that inflammatory mediators from tumor microenvironment are involved in the pathogenesis of TNBC and might be related to chemoresistance of cancer cells. In this study, the contribution of interleukin‐6 (IL‐6), one of the principal oncogenic molecules, in chemoresistance of a TNBC cell line MDA‐MB‐231 was first investigated. The results showed that IL‐6 treatment could induce upregulation of HIF‐1α via the activation of STAT3 in MDA‐MB‐231 cells, which consequently contributed to its effect against chemotherapeutic drug‐induced cytotoxicity and cell apoptosis. However, knockdown of HIF‐1α attenuated such effect via affecting the expressions of apoptosis‐related molecules as Bax and Bcl‐2 and drug transporters as P‐gp and MRP1. This study indicated that targeting at IL‐6/HIF‐1α signaling pathway might be an effective strategy to overcome chemoresistance in TNBC therapy.  相似文献   

11.
Histone deacetylase inhibitors (HDACi) are agents capable of inducing growth arrest and apoptosis in different tumour cell types. Previously, we reported a series of novel HDACi obtained by hybridizing SAHA or oxamflatin with 1,4‐benzodiazepines. Some of these hybrids proved effective against haematological and solid cancer cells and, above all, compound (S)‐8 has emerged for its activities in various biological systems. Here, we describe the effectiveness of (S)‐8 against highly metastatic human A375 melanoma cells by using normal PIG1 melanocytes as control. (S)‐8 prompted: acetylation of histones H3/H4 and α‐tubulin; G0/G1 and G2/M cell cycle arrest by rising p21 and hypophos‐phorylated RB levels; apoptosis involving the cleavage of PARP and caspase 9, BAD protein augmentation and cytochrome c release; decrease in cell motility, invasiveness and pro‐angiogenic potential as shown by results of wound‐healing assay, down‐regulation of MMP‐2 and VEGF‐A/VEGF‐R2, besides TIMP‐1/TIMP‐2 up‐regulation; and also intracellular accumulation of melanin and neutral lipids. The pan‐caspase inhibitor Z‐VAD‐fmk, but not the antioxidant N‐acetyl‐cysteine, contrasted these events. Mechanistically, (S)‐8 allows the disruption of cytoplasmic HDAC6‐protein phosphatase 1 (PP1) complex in A375 cells thus releasing the active PP1 that dephosphorylates AKT and blocks its downstream pro‐survival signalling. This view is consistent with results obtained by: inhibiting PP1 with Calyculin A; using PPP1R2‐transfected cells with impaired PP1 activity; monitoring drug‐induced HDAC6‐PP1 complex re‐shuffling; and, abrogating HDAC6 expression with specific siRNA. Altogether, (S)‐8 proved very effective against melanoma A375 cells, but not normal melanocytes, and safe to normal mice thus offering attractive clinical prospects for treating this aggressive malignancy.  相似文献   

12.
Skeletal muscle dysfunction contributes to exercise limitation in COPD. In this study cigarette smoke exposure was hypothesized to increase expression of the inflammatory cytokine, TNF‐α, thereby suppressing PGC‐1α, and hence affecting down stream molecules that regulate oxygen transport and muscle function. Furthermore, we hypothesized that highly vascularized oxidative skeletal muscle would be more susceptible to cigarette smoke than less well‐vascularized glycolytic muscle. To test these hypotheses, mice were exposed to cigarette smoke daily for 8 or 16 weeks, resulting in 157% (8 weeks) and 174% (16 weeks) increases in serum TNF‐α. Separately, TNF‐α administered to C2C12 myoblasts was found to dose‐dependently reduce PGC‐1α mRNA. In the smoke‐exposed mice, PGC‐1α mRNA was decreased, by 48% in soleus and 23% in EDL. The vascular PGC‐1α target molecule, VEGF, was also down‐regulated, but only in the soleus, which exhibited capillary regression and an oxidative to glycolytic fiber type transition. The apoptosis PGC‐1α target genes, atrogin‐1 and MuRF1, were up‐regulated, and to a greater extent in the soleus than EDL. Citrate synthase (soleus—19%, EDL—17%) and β‐hydroxyacyl CoA dehydrogenase (β‐HAD) (soleus—22%, EDL—19%) decreased similarly in both muscle types. There was loss of body and gastrocnemius complex mass, with rapid soleus but not EDL fatigue and diminished exercise endurance. These data suggest that in response to smoke exposure, TNF‐α‐mediated down‐regulation of PGC‐1α may be a key step leading to vascular and myocyte dysfunction, effects that are more evident in oxidative than glycolytic skeletal muscles. J. Cell. Physiol. 222: 320–327, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

15.
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.  相似文献   

16.
Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia‐inducible factor (HIF)‐1α is largely unknown. In this study, we investigated whether HIF‐1α could be a deacetylation target of Sirt1 and the effect of their interaction on age‐associated renal injury. Five‐week‐old (young) and 24‐month‐old (old) C57Bl/6J mice were assessed for their age‐associated changes. Kidneys from aged mice showed increased infiltration of CD68‐positive macrophages, higher expression of extracellular matrix (ECM) proteins, and more apoptosis than young controls. They also showed decreased Sirt1 expression along with increased acetylated HIF‐1α. The level of Bcl‐2/adenovirus E1B‐interacting protein 3, carbonic anhydrase 9, Snail, and transforming growth factor‐β1, which are regulated by HIF‐1α, was significantly higher in aged mice suggesting that HIF‐1α activity was increased. In HK‐2 cells, Sirt1 inhibitor sirtinol and siRNA‐mediated knockdown of Sirt1 enhanced apoptosis and ECM accumulation. During hypoxia, Sirt1 was down‐regulated, which allowed the acetylation and activation of HIF‐1α. Resveratrol, a Sirt1 activator, effectively prevented hypoxia‐induced production of ECM proteins, mitochondrial damage, reactive oxygen species generation, and apoptosis. The inhibition of HIF‐1α activity by Sirt1‐induced deacetylation of HIF‐1α was confirmed by Sirt1 overexpression under hypoxic conditions and by resveratrol treatment or Sirt1 overexpression in HIF‐1α‐transfected HK‐2 cells. Finally, we confirmed that chronic activation of HIF‐1α promoted apoptosis and fibrosis, using tubular cell‐specific HIF‐1α transgenic mice. Taken together, our data suggest that Sirt1‐induced deacetylation of HIF‐1α may have protective effects against tubulointerstitial damage in aged kidney.  相似文献   

17.
Although Hif‐2α is a master regulator of catabolic factor expression in osteoarthritis development, Hif‐2α inhibitors remain undeveloped. The aim of this study was to determine whether Cirsium japonicum var. maackii (CJM) extract and one of its constituents, apigenin, could attenuate the Hif‐2α‐induced cartilage destruction implicated in osteoarthritis progression. In vitro and in vivo studies demonstrated that CJM reduced the IL‐1β‐, IL‐6, IL‐17‐ and TNF‐α‐induced up‐regulation of MMP3, MMP13, ADAMTS4, ADAMTS5 and COX‐2 and blocked osteoarthritis development in a destabilization of the medial meniscus mouse model. Activation of Hif‐2α, which directly up‐regulates MMP3, MMP13, ADAMTS4, IL‐6 and COX‐2 expression, is inhibited by CJM extract. Although cirsimarin, cirsimaritin and apigenin are components of CJM and can reduce inflammation, only apigenin effectively reduced Hif‐2α expression and inhibited Hif‐2α‐induced MMP3, MMP13, ADAMTS4, IL‐6 and COX‐2 expression in articular chondrocytes. IL‐1β induction of JNK phosphorylation and IκB degradation, representing a critical pathway for Hif‐2α expression, was completely blocked by apigenin in a concentration‐dependent manner. Collectively, these effects indicate that CJM and one of its most potent constituents, apigenin, can lead to the development of therapeutic agents for blocking osteoarthritis development as novel Hif‐2α inhibitors.  相似文献   

18.
19.
Human leucocyte antigen (HLA)‐G has seven isoforms, of which HLA‐G1‐G4 are membrane‐bound and HLA‐G5‐G7 are soluble. Previous studies reinforced HLA‐G expression was strongly related to poor prognosis in different types of cancers. Among these studies, the monoclonal antibody (mAb) 4H84 was used which detects all HLA‐G isoform heavy chain; unfortunately, leaves the specific types of isoforms expressed in lesions undistinguished and its clinical significance needs to be clarified. To explore clinical significance of lesion soluble HLA‐G (sHLA‐G) in non‐small‐cell lung cancer (NSCLC), mAb 5A6G7 recognizing HLA‐G5/‐G6 molecules was used. Tumour cell sHLA‐G expression in 131 primary NSCLC lesions (66 squamous cell carcinoma, 55 adenocarcinoma and 10 adenosquamous carcinoma) were analysed with immunohistochemistry. Data showed that sHLA‐G expression was observed in 34.0% (45/131) of the NSCLC lesions, which was unrelated to patient age, sex, lymph nodal status, tumour–node–metastasis stage and patient survival. However, tumour cell sHLA‐G expression in lesions was predominately observed in adenocarcinoma lesions (73.0%, 40/55) which was significantly higher than that in squamous cell carcinoma (6.0%, 4/66) and adenosquamous carcinoma lesions (10.0%, 1/10, P < 0.001). The area under the receiver operating characteristic curve for lesion sHLA‐G was 0.833 (95% CI: 0.754–0.912, P < 0.001) for adenocarcinoma versus squamous cell carcinoma. Our findings for the first time showed that tumour cell sHLA‐G was predominately expressed in lung adenocarcinoma, which could be a useful biomarker to discriminate adenocarcinoma from squamous cell carcinoma in NSCLC patients.  相似文献   

20.
BRI1‐ASSOCIATED KINASE 1 (BAK1) was initially identified as a co‐receptor of the brassinosteroid (BR) receptor BRI1. Genetic analyses also revealed that BAK1 and its closest homolog BAK1‐LIKE 1 (BKK1) regulate a BR‐independent cell‐death control pathway. The double null mutant bak1 bkk1 displays a salicylic acid‐ and light‐dependent cell‐death phenotype even without pathogen invasion. Molecular mechanisms of the spontaneous cell death mediated by BAK1 and BKK1 remain unknown. Here we report our identification of a suppressor of bak1 bkk1 (sbb1–1). Genetic analyses indicated that cell‐death symptoms in a weak double mutant, bak1–3 bkk1–1, were completely suppressed by the loss‐of‐function mutation in SBB1, which encodes a nucleoporin (NUP) 85‐like protein. Genetic analyses also demonstrated that individually knocking out three other nucleoporin genes from the SBB1‐located sub‐complex was also able to rescue the cell‐death phenotype of bak1–3 bkk1–1. In addition, a DEAD‐box RNA helicase, DRH1, was identified in the same protein complex as SBB1 via a proteomic approach. The drh1 mutation also rescues the cell‐death symptoms of bak1–3 bkk1–1. Further analyses indicated that export of poly(A)+ RNA was greatly blocked in the nup and drh1 mutants, resulting in accumulation of significant levels of mRNAs in the nuclei. Over‐expression of a bacterial NahG gene to inactivate salicylic acid also rescues the cell‐death phenotype of bak1–3 bkk1–1. Mutants suppressing cell‐death symptoms always showed greatly reduced salicylic acid contents. These results suggest that nucleocytoplasmic trafficking, especially of molecules directly or indirectly involved in endogenous salicylic acid accumulation, is critical in BAK1‐ and BKK1‐mediated cell‐death control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号