首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Healthcare is a critical and complex service sector with direct and indirect greenhouse gas (GHG) emissions amounting to 5%–10% of the national total in developed economies like Canada and the United States. Along with a growing, albeit sporadic, set of life cycle assessment (LCA) (and “carbon footprinting”) studies of specific medical products and procedures, there is growing interest in “environmental footprinting” of hospitals. In this article, we advance this rapidly evolving area through a comprehensive organizational LCA of a 40-bed hospital in British Columbia, Canada, in its 2019 fiscal year. Our results indicate that the total environmental footprint of the hospital includes, among other things, global warming potential of 3500–5000 t CO2 eq. (with 95% confidence). “Hotspots” in this footprint are attributable to energy and water use (and wastewater released), releases of anesthetic gases (which are potent GHGs), and the upstream production of the thousands of materials, chemicals, pharmaceuticals, and other products used in the hospital. The generalizability and comparability of these results are limited by inconsistencies across the few environmental footprinting studies of hospitals conducted to date. Nonetheless, our novel methodological approach, in which we compiled new LCA data for 200 goods and services used in healthcare—strategically selected to statistically represent the 2927 unique products in the hospital's “supply-chains”—has broad applicability in healthcare and beyond.  相似文献   

2.
Renewable energies are emerging across the globe in an attempt to slow down global warming and to improve national energy security in face of the depleting fossil fuel reserves. However, the general policy of mandating the replacement of fossil fuels with the so-called “green” energies may not be as effective and environmental-friendly as previously thought, due to the secondary impacts of renewable energies on different natural resources. Thus, an integrated systems analysis framework is essential to selecting optimal energy sources that address global warming and energy security issues with minimal unintended consequences and undesired secondary impacts on valuable natural resources. This paper proposes a system of systems (SoS) framework to determine the relative aggregate footprint (RAF) of energy supply alternatives with respect to different sustainability criteria and uncertain performance values. Based on the proposed method, the RAF scores of a range of renewable and nonrenewable energy alternatives are determined using their previously reported performance values under four sustainability criteria, namely carbon footprint, water footprint, land footprint, and cost of energy production. These criteria represent environmental efficiency, water use efficiency, land use efficiency, and economic efficiency, respectively. The study results suggest that geothermal energy and biomass energy from miscanthus are the most and least resource-use efficient energy alternatives based on the performance data available in the literature. In addition, despite their lower carbon footprints, some renewable energy sources are less promising than non-renewable energy sources from a SoS perspective that considers the trade-offs between the greenhouse gas emissions of energies and their effects on water, ecosystem, and economic resources. Robustness analysis suggests that with respect to the existing performance values and uncertainties in the literature, solar thermal and hydropower have the most and least level of RAF robustness, respectively. Sensitivity analysis indicates that geothermal energy and ethanol from sugarcane, have the lowest and highest RAF sensitivity to resource availability, respectively.  相似文献   

3.
Natural resource scarcity is no longer merely a remote possibility and governments increasingly seek information about the global distribution of resource use and related environmental pressures. This paper presents an international distributional analysis of natural resource use indicators. These encompass both territorial (national production) and footprint (national consumption) indicators for land-related pressures (human appropriation of net primary production, HANPP, and embodied HANPP), for material use (domestic material extraction and consumption and material footprint), and for carbon emissions (territorial carbon emissions and carbon footprints). Our main question is “What, both from a territorial and a footprint perspective, are the main driving factors of international environmental inequality?”. We show that, for the environmental indicators we studied, inequality tends to be higher for footprint indicators than for territorial ones. The exception is land use intensity (as measured by HANPP), for which geographical drivers mainly determine the distribution pattern. The international distribution of material consumption is mainly a result of economic drivers whereas, for domestic extraction, demographic drivers can explain almost half of the distribution pattern. Finally, carbon emissions are the environmental pressure that shows the highest international inequality because of the larger contribution of economic drivers.  相似文献   

4.
The cradle‐to‐cradle (C2C) concept has emerged as an alternative to the more established eco‐efficiency concept based on life cycle assessment (LCA). The two concepts differ fundamentally in that eco‐efficiency aims to reduce the negative environmental footprint of human activities while C2C attempts to increase the positive footprint. This article discusses the strengths and weaknesses of each concept and suggests how they may learn from each other. The eco‐efficiency concept involves no long‐term vision or strategy, the links between resource consumption and waste emissions are not well related to the sustainability state, and increases in eco‐efficiency may lead to increases in consumption levels and hence overall impact. The C2C concept's disregard for energy efficiency means that many current C2C products will likely not perform well in an LCA. Inherent drawbacks are restrictions on the development of new materials posed by the ambition of continuous loop recycling, the perception that human interactions with nature can benefit all parts of all ecosystems, and the hinted compatibility with continued economic growth. Practitioners of eco‐efficiency can benefit from the visions of C2C to avoid a narrow‐minded focus on the eco‐efficiency of products that are inherently unsustainable. Moreover, resource efficiency and positive environmental effects could be included more strongly in LCA. Practitioners of C2C on the other hand should recognize the value of LCA in addressing trade‐offs between resource conservation and energy use. Also, when designing a “healthy emission” it should be recognized that it will often have an adverse effect on parts of the exposed ecosystem.  相似文献   

5.
Biopharmaceuticals manufacturing is a critical component of the modern healthcare system, with emerging new treatments composed of increasingly complex biomolecules offering solutions to chronic and debilitating disorders. While this sector continues to grow, it strongly exhibits “boom-to-bust” performance which threatens its long-term viability. Future trends within the industry indicate a shift towards continuous production systems using single use technologies that raises sustainability issues, yet research in this area is sparse and lacks consideration of the complex interactions between environmental, social and economic concerns. The authors outline a sustainability-focused vision and propose opportunities for research to aid the development of a more integrated approach that would enhance the sustainability of the industry.  相似文献   

6.
This Forum piece describes a collaborative project between engineering and architecture to visualize some of the most influential results from industrial ecology using human‐scale, photorealistic images that are quantitatively accurate. Our goal was to apply visualization theories and practices from art and architecture to address a major communication problem in our field: though inspirational in concept, in practice much industrial ecology research is difficult to comprehend for the average person. Models are large and complex, metrics are esoteric, and results are often reported on a scale that is devoid of personal meaning. Our strategy was to place hidden flows and embodied emissions in plain sight, creating images that show the environmental implications of consumption as absurd insertions into scenes of daily life, at a scale that is relatable and personally meaningful. We also compare with and discuss other artistic efforts around the world in the oeuvre of “Consumption Art,” providing historical context. Industrial ecology envisions a world where production systems can incorporate social and environmental implications in real‐time, where policy is informed by our best understanding of trade‐offs and inequities, and where the public has an appreciation for what actions are meaningful, all with the goals of improving quality of life for all while safeguarding the environment and human health. Effective communication of our research is vital to build consensus for policy and action toward this vision, and one under‐appreciated aspect of communication in our field is the sympathetic power of Art.  相似文献   

7.
At least three perspectives—industrial ecology (IE), ecological modernization theory (EMT), and the “environmental Kuznets curve” (EKC)—emphasize the potential for sustainability via refinements in production systems that dramatically reduce the environmental impacts of economic development. Can improvements in efficiency counterbalance environmental impacts stemming from the scale of production? To address this question we analyze cross‐national variation in the ecological footprint (EF) per unit of gross domestic product (GDP). The EF is a widely recognized indicator of human pressure on the environment. The EF of a nation is the amount of land area that would be required to produce the resources it consumes and to absorb the wastes it generates. The most striking finding of our analyses is that there is limited variation across nations in EF per unit of GDP. This indicates limited plasticity in the levels of EF intensity or eco‐efficiency among nations, particularly among affluent nations. EF intensity is lowest (ecoefficiency is highest) in affluent nations, but the level of efficiency in these nations does not appear to be of sufficient magnitude to compensate for their large productive capacities. These results suggest that modernization and economic development will be insufficient, in themselves, to bring about the ecological sustainability of societies.  相似文献   

8.
Although environmental education and education for sustainable development have become well‐established areas of scholarship and practice, there has not been a similar development focused on “industrial ecology education.” A review of the historical context and guiding philosophies for each of these areas finds many similarities, as well as key differences. Environmental education traces its modern roots to the idealism of the 1960s and 1970s. It has focused mostly on improving environmental conditions. Education for sustainable development arose along with international concerns about social justice. It has emphasized general education as well as education about sustainability as necessary to ensure human prosperity. Industrial ecology, in its contemporary form, evolved as an applied approach to address environmental concerns and to meet sustainability goals. It has developed into a diverse, multifaceted approach to address the complexity inherent in industrial society. Education focused on industrial ecology remains decentralized, with core principles and tools being integrated into existing disciplinary programs as well as development of industrial‐ecology–specific curricula. These efforts have not coalesced into a formalized, industrial ecology education. Rather than reflecting a shortcoming, this potentially offers a more robust method for applying industrial ecology principles and tools widely.  相似文献   

9.
Understanding how a circular economy (CE) can reduce environmental pressures from economic activities is crucial for policy and practice. Science provides a range of indicators to monitor and assess CE activities. However, common CE activities, such as recycling and eco‐design, are contested in terms of their contribution to environmental sustainability. This article assesses whether and to what extent current approaches to assess CE activities sufficiently capture environmental pressures to monitor progress toward environmental sustainability. Based on a material flow perspective, we show that most indicators do not capture environmental pressures related to the CE activities they address. Many focus on a single CE activity or process, which does not necessarily contribute to increased environmental sustainability overall. Based on these results, we suggest complementing CE management indicators with indicators capturing basic environmental pressures related to the respective CE activity. Given the conceptual linkage between CE activities, resource extraction, and waste flows, we suggest that a resource‐based footprint approach accounting for major environmental inputs and outputs is necessary—while not sufficient—to assess the environmental sustainability of CE activities. As footprint approaches can be used across scales, they could aid the challenging process of developing indicators for monitoring progress toward an environmentally sustainable CE at the European, national, and company levels.  相似文献   

10.
The sustainable production and supply of raw materials (“nonenergy raw materials”) and primary energy carriers (“energy raw materials”) is a core element of many policies. The natural resource base for their production and supply, and the access thereto, are limited. Moreover, raw material supply is high on environmental and social impact agendas as well. A broad, quantitative framework that supports decision makers is recommended so as to make use of raw materials and primary energy carriers more sustainably. First, this article proposes a holistic classification of raw materials and primary energy carriers. This is an essential prerequisite for developing an integrated sustainability assessment framework (ISAF). Indeed, frequently, only a subset of raw materials and primary energy carriers are considered in terms of their source, sector, or final application. Here, 85 raw materials and 30 primary energy carriers overall are identified and grouped into seven and five subgroups, respectively. Next, this article proposes a quantitative ISAF for the production and supply of raw materials and primary energy carriers, covering all the sustainability pillars. With the goal of comprehensiveness, the proposed ISAF integrates sustainability issues that have been covered and modeled in quite different quantitative frameworks: ecosystem services; classical life cycle assessment (LCA); social LCA; resource criticality assessment; and particular international concerns (e.g., conflict minerals assessment). The resulting four areas of concerns (i.e., environmental, technical, economic, and social/societal) are grouped into ten specific sustainability concerns. Finally, these concerns are quantified through 15 indicators, enabling the quantitative sustainability assessment of the production and supply of raw materials and primary energy carriers.  相似文献   

11.
The emergence of food security as a key policy issue in developed nations has been concomitant with the need to reduce greenhouse gas emissions and the implementation of Environmental Management Systems in primary industries. Biotechnological interventions such as biorefinery platforms that produce chemicals and fuels provide opportunities to reconcile the security and environmental sustainability criteria increasingly sought after by governments. Indeed, sustainable and more carbon neutral options have been positively benchmarked against scenarios based solely on petrochemical feedstocks. Notably, biotechnology companies are beginning to use Environmental Management Systems employed by other industries to advocate the benefits of green technologies that employ GM, industrial enzymes and bio-materials. Management systems such as Life Cycle Analysis are providing a powerful means to measure benefits and augment change in the biotechnology sector. These methods are discussed here in the context of the emergent 21st Century debates on security. The evidence presented leads to a conclusion where biotechnologies are likely to offer increasingly high impact options for sustainability and security criteria required for food and fuel supply.  相似文献   

12.
Livestock production is a major contributor to greenhouse gas (GHG) emissions, so will play a significant role in the mitigation effort. Recent literature highlights different strategies to mitigate GHG emissions in the livestock sector. Animal welfare is a criterion of sustainability and any strategy designed to reduce the carbon footprint of livestock production should consider animal welfare amongst other sustainability metrics. We discuss and tabulate the likely relationships and trade-offs between the GHG mitigation potential of mitigation strategies and their welfare consequences, focusing on ruminant species and on cattle in particular. The major livestock GHG mitigation strategies were classified according to their mitigation approach as reducing total emissions (inhibiting methane production in the rumen), or reducing emissions intensity (Ei; reducing CH4 per output unit without directly targeting methanogenesis). Strategies classified as antimethanogenic included chemical inhibitors, electron acceptors (i.e. nitrates), ionophores (i.e. Monensin) and dietary lipids. Increasing diet digestibility, intensive housing, improving health and welfare, increasing reproductive efficiency and breeding for higher productivity were categorized as strategies that reduce Ei. Strategies that increase productivity are very promising ways to reduce the livestock carbon footprint, though in intensive systems this is likely to be achieved at the cost of welfare. Other strategies can effectively reduce GHG emissions whilst simultaneously improving animal welfare (e.g. feed supplementation or improving health). These win–win strategies should be strongly supported as they address both environmental and ethical sustainability. In order to identify the most cost-effective measures for improving environmental sustainability of livestock production, the consequences of current and future strategies for animal welfare must be scrutinized and contrasted against their effectiveness in mitigating climate change.  相似文献   

13.
This article addresses a market‐based management concept for waste electrical and electronic equipment (WEEE) known as the “best‐of‐two‐worlds” approach. The concept is based on the idea that recyclers in developing countries and emerging economies can cooperate with technologically advanced refineries in industrialized countries to facilitate efficient recovery of valuable metals, such as gold and palladium, from e‐waste. The article provides an overview of technical and environmental concerns underlying the concept and sheds light on the political framework, the waste‐related trade issues, and the resource economics that need to be considered for further decision making. Building on this synthesis, I conduct a qualitative assessment of sustainability impacts of the proposed concept by analyzing two scenarios and their associated risks. The analysis suggests that, under certain preconditions, the best‐of‐two‐worlds concept could yield significant improvements in terms of management of hazardous substances, resource efficiency, greenhouse gas emissions, income generation, and investments into social and environmental standards. Generally, two potential implementation scenarios were identified: Whereas under Scenario 1 only WEEE generated within developing countries and emerging economies is managed through the best‐of‐two‐worlds approach, Scenario 2 additionally incorporates WEEE imported from industrialized countries. Although both scenarios can yield a variety of benefits, Scenario 2 might cause a net flow of hazardous substances from industrialized countries into developing countries and emerging economies, thus leading to less beneficial sustainability impacts.  相似文献   

14.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

15.
The longer term sustainability of the minerals sector may hinge, in large part, on finding innovative solutions to the challenges of energy intensity and carbon dioxide (CO2) management. This article outlines the need for large‐scale “carbon solutions” that might be shared by several colocated energy‐intensive and carbon‐intensive industries. In particular, it explores the potential for situating a mineral carbonation plant as a carbon sink at the heart of a minerals and energy complex to form an industrial symbiosis. Several resource‐intensive industries can be integrated synergistically in this way, to enable a complex that produces energy and mineral products with low net CO2 emissions. An illustrative hypothetical case study of such a system within New South Wales, Australia, has been constructed, on the basis of material and energy flows derived from Aspen modeling of a serpentine carbonation process. The synergies and added value created have the potential to significantly offset the energy and emission penalties and direct costs of CO2 capture and storage. This suggests that greenfield minerals beneficiation and metals refining plants should consider closer integration with the power production and energy provision plants on which they depend, together with a carbon solution, such as mineral carbonation, as a critical element of such integration. Other sustainability considerations are highlighted.  相似文献   

16.
This article applies principles of industrial ecology to small‐ and medium‐sized biodiesel production facilities. A large potential for gains in efficiency and profit are realized through technology retrofits and the novel application and reuse of process materials. Our basic criteria for sustainability of farm‐scale biodiesel production systems are measured by the following questions: Are all of the resources, mass, and energy flows in the system rational and harmonized? Is the feedstock produced without adverse effects on natural resources or the food chain? We answer these questions by presenting and applying the latest chemical engineering and technology research to support the harmonized and rationalized use of resources and energy within the system boundaries of a farm economy. The feedstock must include refuse and secondary oil sources with low impact on the food chain. Emissions must be reduced to a minimum for a smaller carbon footprint and positive emissions balance from seed to exhaust. Discharges should be avoided; wastes must be turned into primary and intermediary products or energy resources. Proper techniques and routines should serve environmental and human health and safety targets. Reuse of existing assets is considered for improving unit capacity and efficiency, thus lowering costs of conversion. Significant benefits in profitability and production capacity, combined with improved environmental performance, are the main outcomes of the recommended restructuring of production at farm‐scale.  相似文献   

17.
Modern environmental and sustainability policy that acknowledges the linkages between socioeconomic processes and environmental pressures and impacts, and designs policies to decouple economic activity from environmental pressures and impacts, requires a sophisticated and comprehensive knowledge base. The concept of industrial metabolism provides a sound conceptual base, and material flow accounting—including primary material inputs and outflows of waste and emissions—provides a well‐accepted operationalization. Studies presenting a comprehensive material flow account for a national economy are rare, especially for developing countries. Countries such as Lao People's Democratic Republic (Lao PDR or Laos) face dual objectives of improving the material standard of living of their people while managing natural resources sustainably and mitigating adverse environmental impacts from growing resource throughput. Our research fills a knowledge gap, presents a comprehensive account of material inputs and outflows of waste and emissions for the Lao PDR national economy, and applies the accounting approach for a low‐income economy in Asia. We present a material balance for the years 2000 and 2015. For this research, we used data from Lao PDR national statistics and the accounting guidelines of the European Statistical Office (Eurostat), which pioneered the use of material flow data as part of its official statistical reporting. We demonstrate the feasibility of the accounting approach and discuss the robustness of results using uncertainty analysis conducted with statistical approaches commonly used in the field of industrial ecology, including Gauss's law of error propagation and Monte Carlo simulation. We find that the fast‐changing scale and composition of Lao PDR material flows, waste, and emissions presents challenges to the existing policy capacity and will require investment into governance of changed patterns of material use, waste disposal, and emissions. We consider the data analysis sufficiently robust to inform such a change in policy direction.  相似文献   

18.
As a subdiscipline of industrial ecology, industrial symbiosis is concerned with resource optimization among colocated companies. The industrial symbiosis complex in Kalundborg, Denmark is the seminal example of industrial symbiosis in the industrial ecology literature. In spite of this, there has been no in-depth quantitative analysis enabling more comprehensive understanding of economic and environmental performances connected to this case. In this article some of the central industrial symbiotic exchanges, involving water and steam, in Kalundborg are analyzed, using detailed economic and environmental data. It is found that both substantial and minor environmental benefits accrue from these industrial symbiosis exchanges and that economic motivation often is connected to upstream or downstream operational performance and not directly associated with the value of the exchanged byproduct or waste itself. It is concluded that industrial symbiosis, as viewed from a company perspective, has to be understood both in terms of individual economic and environmental performance, and as a more collective approach to industrial sustainability.  相似文献   

19.
Facilitated regional industrial symbiosis (FRIS) initiatives mainly aim at increasing regional resource‐use efficiency, but should also assess and anticipate other environmental consequences of the intended structural system changes. To successfully embed environmental criteria in an FRIS process, the environmental impacts resulting from induced system changes should comprehensively address all environmental aspects relevant to stakeholders. Normative environmental assessment frameworks used in FRIS, such as life cycle assessment, fail to address the ambiguity surrounding the concept of environment itself and its social foundations. The “environment” is a polysemous (i.e., has multiple meanings), relative and subjective construction and environmental consequences of FRIS initiative should be selected by means of environmental assessment frameworks that enable subjective identification of environmental phenomena of interest. We propose such an environmental assessment framework providing both (1) a logical basis accommodating all FRIS stakeholders’ perceptions of the environment and environmental consequences and (2) a method, embedding that logical basis, for the consideration of environmental consequences in FRIS. The logical basis is built by conceptually structuring independent key elements of the perception of “environment,” that is, the relation between environmental consequences and FRIS stakeholders (object‐subject relation). This generic environmental assessment framework contrasts with the direct use of normative frameworks under which both the phenomena of interest and their indicators are conflated and predefined. The proposed framework is partially illustrated by describing its application to a specific case: the identification of phenomena of interest within an FRIS process aiming to recycle organic residues in Réunion.  相似文献   

20.
In global industry supply chains, environmental sustainability optimization addresses the overall consumption of resources and energy, the reduction of carbon emissions and generated waste to name a few. In this paper, we propose a holistic sustainability optimization framework for strategic network design of industry supply chains under consideration of economic, social as well as ecologic objectives. The framework is flexible to incorporate multiple sustainability indicators, alternative sustainability optimization strategies as well as a variety of internal and external industry-specific factors which impact the sustainability of the entire industry supply chain in the long-term. The core of the framework is an end-to-end closed-loop value chain model consisting of process, transport and product-in-use modules. For the first time, the product-in-use impact (“use” vs. “make”) is integrated in one network design approach. In addition, the model fully closes the loop from sourcing of raw materials via manufacturing towards reverse value chain steps such as disposal and recycling. Finally, we propose the minimize-time-to-sustainability approach as new optimization strategy for long-term network design problems focusing on minimizing the time, industry supply chain structures need to transform into sustainability steady states for all defined sustainability indicators such as CO2e emissions, costs or social indicators based on defined target values. In part 2 of this paper the application of the optimization framework to the European automotive industry is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号