首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Previous studies from this laboratory and others have suggested the evidences that acidic glycosphingolipid, ganglioside GM1 (GM1), is an endogenous regulator of high affinity nerve growth factor receptor, Trk, which is an essential factor for the normal development and differentiation of neuronal cells by forming a complex with Trk. The present study was aimed to examine whether Trk expressed in cells that are deficient in endogenous GM1 due to the mutation of GM1 synthase gene (NG-CR72 cells) is responsive to its ligand nerve growth factor and how genetic restoration of GM1 synthase gene by a stable transfection of the gene affects the function of the Trk protein. The data clearly showed that (1) confocal lazor microscopic studies disclosed NG-CR72 cells are really deficient in GM1, (2) stable transfection of GM1 synthase cDNA into these cells (NG-CR72G cells) restores the expression of GM1 in the cells, and (3) Trk protein is expressed in NG-CR72 cells but its location seemed not to be on the plasma membrane, whereas we clearly observed that the Trk protein is expressed on the plasma membrane in NG-CR72G cells. (4) NGF did not elicit the autophosphorylation of the Trk protein in GM1 deficient NG-CR72 cells but did elicit the activation of the Trk protein in NG-CR72G cells with an activation of mitogen activated protein kinase. These studies strongly suggested that GM1 is necessary for the normal expression of the Trk protein function and for normal targeting of the Trk protein to the plasma membrane.  相似文献   

2.
灰色GM(l,l)模对生态预测有重要应用,本文讨论了它的一个改进模GM*(l,1),并深化了文[l]提出的两个问题,给出了较简明的证法,还确定了文[1]所希望的一个“合适的”常数.  相似文献   

3.
Neurochemical studies were performed on synaptosomal membranes from cats with GM1 or GM2 gangliosidosis to examine possible mechanisms of neuronal dysfunction in these disorders. The basic hypothesis tested was that deficient ganglioside catabolism causes increased ganglioside content of synaptosomal plasma membrane which in turn disrupts normal function. Fluidity characteristics of synaptosomal membranes were examined using fluorescence polarization. Results showed markedly reduced membrane fluidity in both GM1 and GM2 gangliosidosis. These results were supported by a second study which revealed that isolated synaptosomal membranes of GM1 gangliosidosis cats had a 24-fold increase in total ganglioside content caused predominantly by excess GM1, a 2.3-fold increased cholesterol content, and a 1.4-fold increased phospholipid content. Finally, kinetic analysis of synaptosomal plasma membrane Na+,K+-ATPase from cats with GM1 gangliosidosis showed negligible differences in kinetic parameters compared with controls. Thus, the enzyme appeared protected from the global membrane changes in fluidity and composition. These observations provide evidence for a pathogenetic mechanism of neuronal dysfunction in the gangliosidoses while demonstrating protection of certain vital functional components, such as Na+,K+-ATPase.  相似文献   

4.
By using a sensitive method, we assayed lysocompounds of gangliosides and asialogangliosides in tissues from four patients with GM2 gangliosidosis (one with Sandhoff disease and three with Tay-Sachs disease) and from three patients with GM1 gangliosidosis [one with infantile type (fetus), one with late-infantile, and one with adult type]. In the brain and spinal cord of all the patients except for an adult GM1 gangliosidosis patient, abnormal accumulation of the lipids was observed, though the concentration in the fetal tissue was low. In GM2 gangliosidosis, the amounts of lyso GM2 ganglioside accumulated in the brain were similar among the patient with Sandhoff disease and the patients with Tay-Sachs disease, whereas the concentration of asialo lyso GM2 ganglioside in the brain was higher in the former patient than in the latter patients. By comparing the sphingoid bases of neutral sphingolipids, gangliosides, and lysosphingolipids, it was suggested that lysosphingolipids in the diseased tissue are synthesized by sequential glycosylation from free sphingoid bases, but not by deacylation of the sphingolipids. Because lysosphingolipids are known to be cytotoxic, the abnormally accumulated lysophingolipids may well be the pathogenetic agent for the neuronal degeneration in gangliosidoses.  相似文献   

5.
目的:构建脆性X相关基因1(FXR1)的真核表达载体并检测其对神经节苷脂(GM1)浓度的影响。方法:以pYESTrp3-FXR1为模板,利用PCR扩增FXR1基因,PCR产物经EcoR I和Xho I双酶切后插入真核表达载体pcDNA3.1(-)中,获得的阳性克隆进一步酶切及测序鉴定;将构建成功的pcDNA3.1(-)-FXR1转染SH-SY5Y细胞后,采用Western blot检测FXR1的表达情况,同时采用ELISA试剂盒检测细胞内GM1的浓度。结果:PCR扩增产物为1.9 Kb的片段,与FXR1基因大小相符,阳性克隆经双酶切后获得两条分别为5.4 Kb和1.9 Kb的片段,测序结果与GeneBank中序列相同。构建成功的重组质粒pcDNA3.1(-)-FXR1转染SH-SY5Y细胞后,细胞中FXR1的表达增加,同时有效提高了细胞内GM1的浓度(P0.05)。结论:成功构建了真核表达载体pcDNA3.1(-)-FXR1,FXR1的表达增加可以提高SH-SY5Y细胞中的GM1浓度,这些为后续深入研究FXR1基因在神经组织发育中的调控功能及其在脆性X综合征(FXS)中的作用机制奠定了基础。  相似文献   

6.
Gangliosides have been implicated in exerting multiple physiological functions, and it is important to understand how their distribution is regulated in the cell membrane. By using freeze-fracture immunolabeling electron microscopy, we showed that GM1 and GM3 make independent clusters that are significantly reduced by cholesterol depletion. In the present study, we examined the effects of actin depolymerization/polymerization and Src-family kinase inhibition on the GM1 and GM3 clusters. Both GM1 and GM3 clustering was reduced when the actin cytoskeleton was perturbed by latrunculin A or jasplakinolide, but the decrease was less significant than that induced by cholesterol depletion. On the other hand, inhibition of Src-family kinases decreased GM3 clustering more drastically than did cholesterol depletion, whereas its effect on GM1 clustering was less significant. GM1 and GM3 were segregated from each other in unperturbed cells, but co-clustering increased significantly after actin depolymerization. Our results indicate that the GM1 and GM3 clusters in the cell membrane are regulated in different ways and that segregation of the two gangliosides depends on the intact actin cytoskeleton.  相似文献   

7.
A new photoactivable, radioactive derivative of ganglioside GM1 has been utilized to assess lipid distribution in the caveolae bilayer, taking advantage of the ability of the glycolipid, endogenous or exogenously added, to concentrate within this membrane compartment and to crosslink neighboring molecules upon illumination. After insertion into A431 plasma membrane and photoactivation, a membrane-enriched and a detergent-resistant fraction, enriched in gangliosides, sphingomyelin and cholesterol, were isolated. While a few radioactive proteins were detected in the membrane-enriched fraction, only radioactive caveolin was detected in the detergent-resistant fraction, indicating at the same time the enrichment of this fraction in caveolae and the presence of ganglioside within this compartment. Among lipids, crosslinked phosphatidylcholine, sphingomyelin and cholesterol were detected in the membrane-enriched fraction, while only crosslinked sphingomyelin was detected in the detergent-resistant fraction. These results suggest the enrichment in sphingomyelin—along with ganglioside—within the outer leaflet, and the preferential localization of cholesterol within the endoplasmic leaflet, of the caveolae bilayer.  相似文献   

8.
S20Y murine neuroblastoma cells appear to express a protein component(s) able to adhere specifically to the oligosaccharide portion of GM1 (oligo-GM1). To identify proteins with which the oligo-GM1 becomes closely associated, a radiolabeled (125I), photoactivatable derivative of oligo-GM1 was prepared. This was accomplished by reductive amination of the glucosyl moiety of oligo-GM1 to 1-deoxy-1-aminoglucitol, followed by reaction of the amine with sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (SASD). Crosslinking studies using the photoactivatable probe indicated that it came in close proximity to a protein with an apparent molecular mass of approximately 71 kDa. In competition experiments, as little as a 10-fold molar excess of oligo-GM1 resulted in a selective reduction in labeling of this protein; preincubation with a 200-fold molar excess of siayllactose was necessary to observe the same change in the labeling pattern, lending additional support to the hypothesis that the approximately 71-kDa protein specifically associates with oligo-GM1. Cell surface location of the oligo-GM1 binding protein was confirmed using subcellular fractionation and morphological analyses.  相似文献   

9.
10.
Subcellular fractionation of rat sciatic nerve was developed to determine the specific localization of gangliosides in the nerve membrane fractions. Myelin, microsomal, and a plasma membrane-like fraction were isolated and purified by sucrose density gradient centrifugation. These subfractions were characterized by electron microscopy, marker enzyme assays, and their protein and lipid profile. In rat sciatic nerve myelin, 90 mol% of the total gangliosides were monosialogangliosides. LM1 (sialosyl-lactoneotetraosylceramide) (61 mol%) and GM3 (21%) were the major gangliosides of the rat nerve myelin. Two other neolacto series of gangliosides, viz., sialosyl-lactoneonorhexaosylceramide and sialosyl-lactoneooctaosylceramide, were also localized mostly in the myelin fraction. GM1 was only a minor (less than 2%) ganglioside in myelin. The ganglioside patterns of the microsomal and plasma membrane-like fractions were similar with minor quantitative differences and were entirely different from that of myelin. Monosialogangliosides were approximately 70-75 mol% of the total in these fractions. The major gangliosides of the microsomal and plasma membrane-like fractions were GM3 (approximately 40%) and GM1 (approximately 20%). LM1 in these fractions was minimal (less than approximately 5%). Significant amounts of GM3 with N-glycolylneuraminic acid (approximately 10%) and GM1b (4-14%) were also identified in the microsomal and plasma membrane-like fractions but not in myelin. These and the higher lactoneo series of gangliosides have not been previously reported to be present in the rat nervous system. Almost exclusive localization of LM1 in myelin in rat peripheral nervous system is consistent with our previous observation that deposition of LM1 in the nerve with age was very similar to that of myelin marker lipids cerebrosides and sulfatides.  相似文献   

11.
Myelin Gangliosides: An Unusual Pattern in the Avian Central Nervous System   总被引:8,自引:8,他引:0  
Abstract: Gangliosides were isolated from purified myelin obtained from brain and spinal cord of mature chickens and pigeons. Total concentrations were approximately two- to fivefold greater than for previously reported mammalian species, and their patterns also differed in containing significantly more sialosylgalactosylceramide (GM4). The latter comprised one-third to one-fourth of total myelin ganglioside, approximately equivalent to GM1 (II3NeuNAc-GgOse4Cer). As in mammals, GM4 of avian CNS appeared to be localized in myelin. Fatty acids of this ganglioside included both the hydroxy- and unsubstituted types. and, long-chain bases were almost entirely C18. Ganglioside GM1 split into two closely migrating bands on TLC, the slower of which resembled mammalian GM1 in having stearate as the main fatty acid with a measurable amount (10%) of C20-sphingosine; the faster band had predominantly longer-chain fatty acids and very little C20-sphingosine.  相似文献   

12.
目的:探讨不同剂量甲钴胺联合单唾液酸四己糖神经节苷脂(GM1)治疗糖尿病周围神经病变的疗效。方法:收取2013年3月至2016年3月我院收治的糖尿病周围神经病变患者116例作为研究对象,按照随机数字表法分为A、B组各58例。A组患者使用高剂量甲钴胺联合GM1治疗,B组患者使用常规剂量甲钴胺联合GM1治疗。对两组治疗效果、神经电生理、不良反应以及患者生活质量进行观察与比较。结果:A组患者治疗显效率和总有效率分别为63.79%和96.55%,显著高于B组的39.66%和84.48%,差异有统计学意义(P0.05)。治疗后两组患者腓神经及正中神经运动神经传导速度(MCV)以及感觉神经传导速度(SCV)均显著提高,与治疗前相比有显著差异,且A组变化幅度明显高于B组,差异有统计学意义(P0.05)。A组不良反应发生率为6.70%,B组为3.45%,两组相较差异不显著(P0.05)。治疗后A组生活质量得分高于B组,差异有统计学意义(P0.05)。结论:高剂量甲钴胺联合GM1治疗糖尿病周围神经病变与常规剂量相比具有更好的疗效,有助于患者生活质量的提高,值得临床推广应用。  相似文献   

13.
Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.  相似文献   

14.
Ganglioside GM1 promoted neuritogenesis of neuroblastoma cells, neuro-2a clone, in monolayer culture. GM1 bound to neuro-2a cells in three distinct forms, one removable by treatment with serum-containing solutions, one serum-resistant and labile to trypsin treatment, and one resistant to serum and trypsin treatments. The proportions among the three forms of cell-associated GM1 varied in relation to duration of exposure to ganglioside, ganglioside concentration in the medium, and number of cells in culture. The form removable by serum was predominant at the initial stages of association and at the highest ganglioside concentrations (over 10(-6)M); the trypsin-labile and -stable forms tended to increase with increasing cell number and decreasing ganglioside concentration. The neuritogenic effect of GM1 was higher when neuro-2a cells were incubated for 24 h in the presence of GM1 and fetal calf serum. Under this condition the percentage of neurite-bearing cells increased from 11% of control to 62% at the optimal ganglioside concentration of 10-4M. The effect was still present, although to a lower extent (from 11% to 28% of neurite-bearing cells), when cells were first exposed for only 2 h to GM1, then washed and incubated for 24 h in the presence of fetal calf serum. The trypsin-labile and -stable forms of cell-associated GM1 had a fundamental role in the effect, whereas the form removable by serum was not involved. The preparation of GM1 used was extremely pure (99%) and, in particular, had a peptide contamination, if any, less than 1:20,000-1:50,000.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Interaction of the local anesthetic dibucaine with small unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) containing different mole percents of monosialoganglioside (GM1) has been studied by fluorescence spectroscopy. Fluorescence measurements on dibucaine in the presence of phospholipid vesicles containing various amounts of GM1 yielded a pattern of variation of wavelength at emission maximum and steady-state anisotropy which indicated that the microenvironment of dibucaine is more hydrophobic and rigid in membranes that contain GM1 than in membranes without it. Experiments on quenching of fluorescence from membrane-associated dibucaine by potassium iodide showed reduced quenching efficiency with the increase in GM1 content of the vesicles, demonstrating lesser accessibility of the iodide quenchers to dibucaine in the presence of GM1, when compared to that in its absence. Total emission intensity decay profiles of dibucaine yielded two lifetime components of 1 and 2.8–3.1 ns with mean relative contributions of 25 and 75%, respectively. The mean lifetime in vesicles was 20–30% lower than in the aqueous medium and showed a definite increase in presence of GM1 from that in the absence of it. All the spectral properties point that dibucaine encountered regions of membrane containing significant amount of GM1 and penetrated deeper in hydrophobic core of the bilayer.  相似文献   

16.
Serum ganglioside patterns in multiple sclerosis   总被引:4,自引:0,他引:4  
The relative distribution of gangliosides was determined in the serum of 37 patients with multiple sclerosis (MS) and of 30 healthy subjects. There was a significant increase of GM1 and GD1a, and a decrease of GM3 proportion in the serum of relapsing-remitting MS patients (RRMS) during their first MS attack. The RRMS patients in relapse with a long duration of the disease had a significant decrease of GM1 and an increase of GD1a portion in the serum. An increase of GD1a, one of the major brain neuron ganglioside fraction, suggested the neuron injury in the early and with a long duration RRMS. The finding of an increase of GM1, the main human myelin ganglioside, during the first MS attack in RRMS patients confirms previous evidence for the possible involvement of gangliosides in the early pathological course of demyelination in MS.  相似文献   

17.
Retinal abnormalities are well documented in patients with ganglioside storage diseases. The total content and distribution of retinal glycosphingolipids was studied for the first time in control mice and in Sandhoff disease (SD) and GM1 gangliosidosis mice. Light and electron microscopy of the SD and the GM1 retinas revealed storage in ganglion cells. Similar to previous findings in rat retina, GD3 was the major ganglioside in mouse retina, while GM2 and GM1 were minor species. Total ganglioside content was 44% and 40% higher in the SD and the GM1 retinas, respectively, than in the control retinas. Furthermore, GM2 and GM1 content were 11-fold and 51-fold higher in the SD and the GM1 retinas than in the control retinas, respectively. High concentrations of asialo-GM2 and asialo-GM1 were found in the SD and the GM1 retinas, respectively, but were undetectable in the control retinas. The GSL abnormalities in the SD and the GM1 retinas reflect significant reductions in beta-hexosaminidase and beta-galactosidase enzyme activities, respectively. Although electroretinograms appeared normal in the SD and the GM1 mice, visual evoked potentials were subnormal in both mutants, indicating visual impairments. Our findings present a model system for assessing retinal pathobiology and therapies for the gangliosidoses.  相似文献   

18.
GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain   总被引:11,自引:0,他引:11  
We investigated the ability of GM1 to induce phosphorylation of the tyrosine kinase receptor for neurotrophins, Trk, in rat brain, and activation of possible down-stream signaling cascades. GM1 increased phosphorylated Trk (pTrk) in slices of striatum, hippocampus and frontal cortex in a concentration- and time-dependent manner, and enhanced the activity of Trk kinase resulting in receptor autophosphorylation. The ability of GM1 to induce pTrk was shared by other gangliosides, and was blocked by the selective Trk kinase inhibitors K252a and AG879. GM1 induced phosphorylation of TrkA > TrkC > TrkB in a region-specific distribution. Adding GM1 to brain slices activated extracellular-regulated protein kinases (Erks) in all three brain regions studied. In striatum, GM1 elicited activation of Erk2 > Erk1 in a time-and concentration-dependent manner. The GM1 effect on Erk2 was mimicked by other gangliosides, and was blocked by the Trk kinase inhibitors K252a and AG879. Pertussis toxin, as well as Src protein tyrosine kinase and protein kinase C inhibitors, did not prevent the GM1-induced activation of Erk2, apparently excluding the participation of Gi and Gq/11 protein-coupled receptors. Intracerebroventricular administration of GM1 induced a transient phosphorylation of TrkA and Erk1/2 in the striatum and hippocampus complementing the in situ studies. These observations support a role for GM1 in modulating Trk and Erk phosphorylation and activity in brain.  相似文献   

19.
Brains of two patients with GM1 gangliosidosis type 1 and type 2, together with the age-matched control brains, were analyzed for glycosphingolipids. Six species of neutral glycolipids, eight species of gangliosides, and sulfatide were isolated from the diseased brains and identified. In addition to GM1 ganglioside and its asialo derivative, the diseased brains accumulated considerable amounts of gangliotriaosylceramide and glycolipids belonging to the globo series, the accumulation of which cannot be explained by deficient beta-galactosidase activity in this disease. GM4 ganglioside was detected in the type 2 brain, but not in type 1. As to fatty acid composition of monohexosylceramides and sulfatide in the two diseased brains, stearic acid was more predominant in the type 1 brain than in the type 2 brain. In light of our previous observations on a Tay-Sachs brain and present results, it appears that metabolism of the globo series glycolipids, which is active in normal brain at early infancy but inactive thereafter, remains in brains with GM1 gangliosidosis (types 1 and 2) and Tay-Sachs disease, reflecting a disturbance in development of the brain.  相似文献   

20.
Abstract: GM1 in the nuclear membrane, previously shown to be up-regulated during neurite outgrowth, has been found to influence nuclear Ca2+ flux during differentiation of Neuro-2a cells. Nuclei were isolated from cultured Neuro-2a cells before and after neuraminidase-induced neuritogenesis and incubated with 45Ca2+ for varying periods to determine uptake/efflux of Ca2+. At 5, 10, and 15 min 45Ca2+ levels in nuclei from differentiated cells were significantly lower than those in nuclei from untreated cells. The same result was obtained when the GM1 level was elevated artificially by preincubation of the nuclei in 10 µ M GM1. In experiments designed to measure efflux specifically, isolated nuclei preincubated in GM1 released 45Ca2+ more rapidly than untreated nuclei. We conclude that one role of GM1 in the nuclear membrane is to alter Ca2+ regulatory mechanisms in the nucleus following onset of neuronal process outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号