首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana‐induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2. We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co‐occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open‐top growth chambers maintained at ambient or twice‐ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics.  相似文献   

2.
Lianas play a key role in forest structure, species diversity, as well as functional aspects of tropical forests. Although the study of lianas in the tropics has increased dramatically in recent years, basic information on liana communities for the Brazilian Atlantic Forest is still scarce. To understand general patterns of liana abundance and biomass along an elevational gradient (0–1,100 m asl) of coastal Atlantic Forest, we carried out a standard census for lianas ≥1 cm in five 1-ha plots distributed across different forest sites. On average, we found a twofold variation in liana abundance and biomass between lowland and other forest types. Large lianas (≥10 cm) accounted for 26–35% of total liana biomass at lower elevations, but they were not recorded in montane forests. Although the abundance of lianas displayed strong spatial structure at short distances, the present local forest structure played a minor role structuring liana communities at the scale of 0.01 ha. Compared to similar moist and wet Neotropical forests, lianas are slightly less abundant in the Atlantic Forest, but the total biomass is similar. Our study highlights two important points: (1) despite some studies have shown the importance of small-scale canopy disturbance and support availability, the spatial scale of the relationships between lianas and forest structure can vary greatly among tropical forests; (2) our results add to the evidence that past canopy disturbance levels and minimum temperature variation exert influence on the structure of liana communities in tropical moist forests, particularly along short and steep elevational gradients.  相似文献   

3.
Lianas (woody vines) are increasing in neotropical forests, representing one of the first large-scale structural changes documented for these important ecosystems. The potential ramifications of increasing lianas are huge, as lianas alter both tropical forest diversity and ecosystem functioning. At the community level, lianas affect tree species co-existence and diversity by competing more intensely with some tree species than others, and thus will likely alter tree species composition. At the ecosystem level, lianas affect forest carbon and nutrient storage and fluxes. A decrease in forest carbon storage and sequestration may be the most important ramification of liana increases. Lianas reduce tree growth and increase tree mortality—thus reducing forest-level carbon storage. The increase in lianas, which have much less wood than trees, compensates only partially for the amount of carbon lost in the displaced trees. Because tropical forests contribute approximately one-third of global terrestrial carbon stocks and net primary productivity, the effect of increasing lianas for tropical forest carbon cycles may have serious repercussions at the global scale.Key words: carbon cycle, CO2, disturbance, global change, land use change, liana increases, structural changes, tropical forestsTropical forests contain most of the earth''s plant species and contribute more to carbon storage in the form of above ground biomass than any other terrestrial ecosystem. Temperate and boreal forests are changing rapidly in response to global anthropogenic drivers. Similar large-scale changes are now being detected in tropical forests. One of the largest contemporary changes in tropical forests is an increase in lianas (woody vines),1 which could have serious consequences for tree species diversity and composition, as well as the reducing capacity of tropical forests to store carbon.13  相似文献   

4.
Liana growth following forest disturbance is threatening the tropical carbon sink by delaying or preventing recovery. Tree growth can be stimulated by liana cutting; however, its applicability for conservation management remains uncertain, particularly in Africa (the least‐studied continent for ecological restoration) and against pervasive barriers such as wildfires. We conducted a small‐scale trial to investigate tree sapling regeneration following liana cutting in a lowland African forest prone to low intensity wildfires. We employed a BACI design comprising eighteen 25 m2 plots of sapling trees in liana‐infested areas. After 5 years of liana cutting, we saw greater recruitment, stem growth and net biomass. Wildfires caused 51% mortality and probably masked liana cutting influences on species and survival, but may have encouraged stem recruitment through interaction with liana cutting. Incorporating our data into a first quantitative review of previous studies, we found that tree growth, recruitment and net growth rates were all consistently higher where lianas were either absent or removed (respectively: 80%, 215%, 633%; n = 14, 3, 4). Tree growth impacts were approximately equivalent across size‐classes and continents. We give recommendations for improved plot and sample sizes, but conclude that liana cutting is a promising restoration method for lowland tropical forests, including Africa.  相似文献   

5.
Recent evidence suggests that liana abundance and biomass are increasing in Neotropical forests, representing a major structural change to tropical ecosystems. Explanations for these increases, however, remain largely untested. Over an 8‐yr period (1999–2007), we censused lianas in nine, 24 × 36 m permanent plots in old‐growth and selectively logged forest at La Selva Biological Station, Costa Rica to test whether: (1) liana abundance and basal area are increasing in this forest; (2) the increase is being driven by increased recruitment, decreased mortality, or both; and (3) long‐distance clonal colonization explains the increase in liana abundance and basal area. We defined long‐distance clonal colonization as lianas that entered and rooted in the plots as vegetative propagules of stems that originated from outside or above the plot, and were present in 2007, but not in 1999 or 2002. Our hypotheses were supported in the old‐growth forest: mean liana abundance and BA (≥1 cm diameter) increased 15 and 20 percent, respectively, and clonal colonization from outside of the plots contributed 19 and 60 percent (respectively) to these increases. Lianas colonized clonally by falling vertically from the forest canopy above or growing horizontally along the forest floor and re‐rooting—common forms of colonization for many liana species. In the selectively logged forest, liana abundance and BA did not change, and thus the pattern of increasing lianas may be restricted to old‐growth forests. In summary, our data support the hypothesis that lianas are increasing in old‐growth forests, and that long‐distance clonal colonization is a major contributor.  相似文献   

6.
Closed‐canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species‐conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree‐species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0–100‐m transect from edge to forest interior) on the liana community and liana–host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana‐infested trees, and determinants of the rates of tree infestation within five forest fragments (23–58 ha in area) and five nearby intact‐forest sites. Fragmented forests experienced considerable disturbance‐induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small‐sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low‐disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.  相似文献   

7.
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3  ° C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25  ° C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24 ° S–24 ° N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.  相似文献   

8.
《农业工程》2020,40(6):478-482
Climbers and lianas occupy an important niche in the forest ecosystem. However, as compared to trees, studies on diversity and ecology of this life form of forest remains neglected. Thus a study was carried out at sub-humid tropical foothill forest of West Bengal, India to document the status of climber and liana diversity, biomass and carbon accumulation. Qualitative and quantitative characters were analysed with the help of random quadrate sampling method. Species richness of the climbers and liana in the forest was 42. The diversity index, concentration of dominance, Shannon and Wiener index and evenness index was estimated at 0.92, 0.038, 1.26 and 1.55, respectively. Density ranged from 15.47 to 722.81 individuals ha−1. IVI values ranged from 0.19 to 4.44. This indicates the climber and liana communities in the forest are diverse but dominance distributed. Biomass and carbon storage was highest with LSDS1.50 and 0.68 Mg ha−1, respectively and lowest with TGDS. Climber and liana ccommunities were recorded with good growth inside the forest which was reflected in their good quantity of biomass accumulation and thus have a great potential to store good quantity of biomass carbon and support the ecosystem. Understanding the forest plant life forms other than trees will be helpful to understand their ecological significance while managing the forests sustainably. The information though in the present study is only baseline and preliminary but can be helpful to plan future research to understand the contribution of these plant life forms in a forest ecosystem holistically.  相似文献   

9.
Lianas are a quintessential feature of tropical forests and are often perceived as being poorly studied. However, liana removal studies may be one of the most common experimental manipulations in tropical forest ecology. In this review, we synthesize data from 64 tropical liana removal experiments conducted over the past 90 yr. We explore the direction and magnitude of the effects of lianas on tree establishment, growth, survival, reproduction, biomass accretion, and plant and animal diversity in ecological and forestry studies. We discuss the geographical biases of liana removal studies and compare the various methods used to manipulate lianas. Overall, we found that lianas have a clear negative effect on trees, and trees benefitted from removing lianas in nearly every study across all forest types. Liana cutting significantly increased light and water availability, and trees responded with vastly greater reproduction, growth, survival, and biomass accumulation compared to controls where lianas were present. Removing lianas during logging significantly reduced damage of future merchantable trees and improved timber production. Our review demonstrates that lianas have an unequivocally detrimental effect on every metric of tree performance measured, regardless of forest type, forest age, or geographic location. However, lianas also appear to have a positive contribution to overall forest plant diversity and to different animal groups. Therefore, managing lianas reduces logging damage and improves timber production; however, the removal lianas may also have a negative effect on the faunal community, which could ultimately harm the plant community.  相似文献   

10.
 木质藤本植物是森林, 尤其是热带和亚热带森林中的重要组分。由于野外调查的困难, 对其生态学的研究相对较少。对哀牢山原生山地湿性常绿阔叶林和4类次生林中的藤本植物进行了调查, 利用48株藤本植物样木实测数据, 采用样本回归分析法, 选取藤本植物的不同参数作为自变量, 分别对冠层和林下两类藤本混合种生物量模型进行了拟合比较, 结合样地内长度≥50 cm的所有藤本植物的调查资料估算了各森林群落藤本植物地上部分生物量, 探讨了原生林中藤本植物地上部分生物量的组成与分布特征, 以及人为干扰对藤本植物地上部分生物量的影响。结果表明: 1)以藤本基径为自变量建立幂函数回归模型, 其相关系数较高, 具有较高的实用价值; 2)该区山地湿性常绿阔叶林中藤本植物地上部分生物量为9.82×103 kg·hm–2, 其中冠层藤本(基径≥1.0 cm, 长度≥5.0 m)生物量占藤本植物总生物量的99.70%, 林下藤本(基径<1.0 cm, 长度<5.0 m)的地上部分生物量很低; 3)人为干扰后林下藤本植物的生物量相对增加, 而冠层藤本植物的地上部分生物量显著减少; 经过约100年恢复演替的老龄栎类萌生林藤本植物地上部分生物量才达到接近原生林的水平。  相似文献   

11.
Lianas (woody vines) can have profound effects on tree recruitment, growth, survival, and diversity in tropical forests. However, the dynamics of liana colonization soon after land abandonment are poorly understood, and thus it is unknown whether lianas alter tree regeneration early in succession. We examined the liana community in 43 forests that ranged from 1 to 31 yr old in central Panama to determine how fast lianas colonize young forests and how the liana community changes with forest succession. We found that lianas reached high densities early in succession, commonly exceeding 1000 stems/ha within the first 5 yr of forest regeneration. Lianas also increased rapidly during early succession in terms of basal area but did not show evidence of saturation within the 30 yr of our chronosequence. The relative contribution of lianas to total woody plant community in terms of basal area and density increased rapidly and reached a saturation point within 5 yr (basal area) to 15 yr (density) after land abandonment. Our data demonstrate that lianas recruit early and in high density in tropical forest regeneration, and thus lianas may have a large effect on the way in which secondary forests develop both early and throughout succession.  相似文献   

12.
Tropical secondary forests form an important part of the landscape. Understanding functional traits of species that colonize at different points in succession can provide insight into community assembly. Although studies on functional traits during forest succession have focused on trees, lianas (woody vines) also contribute strongly to forest biomass, species richness, and dynamics. We examined life history traits of lianas in a forest chronosequence in Costa Rica to determine which traits vary consistently over succession. We conducted 0.1 ha vegetation inventories in 30 sites. To examine the establishment of young individuals, we only included small lianas (0.5–1.5 cm diameter at 1.3 m height). For each species, we identified seed size, dispersal mode, climbing mode, and whether or not the seedling is self‐supporting. We found a strong axis of variation determined by seed size and seedling growth habit, with early successional communities dominated by small‐seeded species with abiotic dispersal and climbing seedlings, while large‐seeded, animal‐dispersed species with free‐standing seedlings increased in abundance with stand age. Contrary to previous research and theory, we found a decrease in the abundance of stem twiners and no decrease in the abundance of tendril‐climbers during succession. Seed size appears to be a better indicator of liana successional stage than climbing mode. Liana life history traits change predictably over succession, particularly traits related to seedling establishment. Identifying whether these trait differences persist into the growth strategies of mature lianas is an important research goal, with potential ramifications for understanding the impact of lianas during tropical forest succession.  相似文献   

13.
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (A mass), nitrogen concentration (N mass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (A area), phosphorus concentration per unit mass (P mass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A area decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A mass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.  相似文献   

14.
Lianas (woody vines) contribute substantially to the diversity and structure of most tropical forests, yet little is known about the importance of habitat specialization in maintaining tropical liana diversity and the causes of variation among forests in liana abundance and species composition. We examined habitat associations, species diversity, species composition, and community structure of lianas at Sepilok Forest Reserve, Sabah, Malaysia in northeastern Borneo among three soil types that give rise to three distinct forest types of lowland tropical rain forest: alluvial, sandstone hill, and kerangas (heath) forest. Alluvial soils are more nutrient rich and have higher soil moisture than sandstone soils, whereas kerangas soils are the most nutrient poor and drought prone. Lianas ≥0.5-cm in diameter were measured, tagged, and identified to species in three square 0.25-ha plots in each forest type. The number of lianas ≥0.5 cm did not differ significantly among forest types and averaged 1348 lianas ha−1, but mean liana stem diameter, basal area, estimated biomass, species richness, and Fisher’s diversity index were all greater for plots in alluvial than sandstone or kerangas forests. Liana species composition also differed greatly among the three habitats, with 71% of species showing significant positive or negative habitat associations. Sandstone forests were intermediate to alluvial and kerangas forests in most aspects of liana community structure and composition, and fewer species showed significant habitat associations with this forest type. Ranking of forest types with respect to liana density, biomass, and diversity matches the ranking in soil fertility and water availability (alluvial > sandstone hill > kerangas). These results suggest that edaphic factors play an important role in maintaining liana species diversity and structuring liana communities.  相似文献   

15.
Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.  相似文献   

16.
Liana dynamics in secondary and mature forests are well known in tropical areas dominated by native tree species. Outside the tropics and in secondary forests invaded by exotic species, knowledge is scarce. In this study, we compare liana communities between secondary and mature forests dominated by native species in a subtropical montane area of Sierra de San Javier, Tucuman, Argentina. Additionally, we evaluate changes of liana communities in secondary forests with increasing densities of Ligustrum lucidum and Morus alba, two of the most invasive exotic trees of the area. We surveyed liana species richness and density in three 30-year secondary patches, four 60-year secondary patches, and four mature patches dominated by native tree species, to analyze changes in liana communities with forest age. Within each patch, we sampled 10–25 20 × 20 m quadrats. Additionally, we surveyed liana density and species richness in secondary forest patches with different densities of L. lucidum and M. alba. In native-dominated forests, liana species richness increased and showed a tendency of increasing basal area from 30-year secondary forests to mature forests. Liana density was highly variable, and most of the species were shared between native-dominated secondary and mature forests. Liana density and species richness decreased with L. lucidum density, whereas in secondary forests highly dominated by M. alba, lianas increased in density. Overall, lianas followed different pathways influenced by native forest succession and exotic tree invasions.  相似文献   

17.
Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO?. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.  相似文献   

18.
Lianas are an important component of tropical forests; they alter tree mortality and recruitment and impact biogeochemical cycling. Recent evidence suggests that the abundance of lianas in tropical forests is increasing. To understand and predict the effect of lianas on ecosystem processes in tropical forests, it is important to understand the mechanisms through which they compete with trees. In this study, we investigated the functional traits of lianas and trees in a lowland tropical forest in northeast Queensland, Australia. The site is located at 16.1° south latitude and experiences significant seasonality in rainfall, with pronounced wet and dry seasons. It is also subject to relatively frequent disturbance by cyclones. We asked the question of whether the canopy liana community at this site would display functional traits consistent with a competitive advantage over trees in response to disturbance, or in response to dry season water stress. We found that traits that we considered indicative of a dry season advantage (xylem water δ18O as an indicator of rooting depth; leaf and stem tissue δ13C and instantaneous gas exchange as measures of water‐use efficiency) did not differ between canopy lianas and canopy trees. On the other hand, lianas differed from trees in traits that should confer an advantage in response to disturbance (low wood density; low leaf dry matter content; high leaf N concentration; high mass‐based photosynthetic rates). We conclude that the liana community at the study site expressed functional traits geared towards rapid resource acquisition and growth in response to disturbance, rather than outcompeting trees during periods of water stress. These results contribute to a body of literature which will be useful for parameterising a liana functional type in ecosystem models.  相似文献   

19.
Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and with tree species identity. Abstract in Portuguese is available with online material.  相似文献   

20.
Lianas are an important component of Neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P 50) and maximum hydraulic conductivity (K h), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号