首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three levels of physical disturbance were applied to corals in permanent 10x10 m quadrats along a section of fringing reef at Lizard Island on the Great Barrier Reef to investigate the response of fish assemblages. Tabular and corymbose corals were overturned and left in situ, reducing total hard coral cover from ˜55% to ˜47%, ˜43%, and ˜34%. Despite pre-existing associations with benthic cover, all fish groups examined (pomacentrids, labrids, chaetodontids, and acanthurids) were resistent to benthic disturbances at the level and scale at which they were applied. Partial Mantel's tests, in combination with partial Canonical Correspondence Analysis enabled spatial and temporal variation to be factored out from experimental effects. Most of the variation in the fish community could be assigned to spatio-temporal variables, indicating that spatial structure over the reef landscape may moderate localised disturbance effects. This study indicates that coral reef fish assemblages may be more resistant to disturbance than many correlative studies would suggest, and highlights a need for further information on levels and scales of natural habitat disturbance in order to apply a structured approach to the experimental investigation of the importance of habitat in structuring coral-reef fish assemblages.  相似文献   

2.
Meriam children are active reef-flat collectors. We demonstrate that while foraging on the reef, children are significantly less selective than adults. This difference and the precise nature of children’s selectivity while reef-flat collecting are consistent with a hypothesis that both children and adults attempt to maximize their rate of return while foraging, but in so doing they face different constraints relative to differences in walking speeds while searching. Implications of these results for general arguments about factors that shape differences between child and adult behavior and human life-histories are explored.  相似文献   

3.
4.
5.
6.
Coral reef islands are among the most vulnerable environments on Earth to climate change because they are low lying and largely constructed from unconsolidated sediments that can be readily reworked by waves and currents. These sediments derive entirely from surrounding coral reef and reef flat environments and are thus highly sensitive to ecological transitions that may modify reef community composition and productivity. How such modifications – driven by anthropogenic disturbances and on‐going and projected climatic and environmental change – will impact reef island sediment supply and geomorphic stability remains a critical but poorly resolved question. Here, we review the unique ecological–geomorphological linkages that underpin this question and, using different scenarios of environmental change for which reef sediment production responses can be projected, explore the likely resilience of different island types. In general, sand‐dominated islands are likely to be less resilient than those dominated by rubble grade material. However, because different islands typically have different dominant sediment constituents (usually either coral, benthic foraminifera or Halimeda) and because these respond differently to individual ecological disturbances, island resilience is likely to be highly variable. Islands composed of coral sands are likely to undergo major morphological change under most near‐future ecological change scenarios, while those dominated by Halimeda may be more resilient. Islands composed predominantly of benthic foraminifera (a common state through the Pacific region) are likely to exhibit varying degrees of resilience depending upon the precise combination of ecological disturbances faced. The study demonstrates the critical need for further research bridging the ecological–geomorphological divide to understand: (1) sediment production responses to different ecological and environmental change scenarios; and (2) dependant landform vulnerability.  相似文献   

7.
Huang D 《PloS one》2012,7(3):e34459
A substantial proportion of the world's living species, including one-third of the reef-building corals, are threatened with extinction and in pressing need of conservation action. In order to reduce biodiversity loss, it is important to consider species' contribution to evolutionary diversity along with their risk of extinction for the purpose of setting conservation priorities. Here I reconstruct the most comprehensive tree of life for the order Scleractinia (1,293 species) that includes all 837 living reef species, and employ a composite measure of phylogenetic distinctiveness and extinction risk to identify the most endangered lineages that would not be given top priority on the basis of risk alone. The preservation of these lineages, not just the threatened species, is vital for safeguarding evolutionary diversity. Tests for phylogeny-associated patterns show that corals facing elevated extinction risk are not clustered on the tree, but species that are susceptible, resistant or resilient to impacts such as bleaching and disease tend to be close relatives. Intensification of these threats or extirpation of the endangered lineages could therefore result in disproportionate pruning of the coral tree of life.  相似文献   

8.
9.
The present study describes ontogenetic shifts in habitat use for 15 species of coral reef fish at Rangiroa Atoll, French Polynesia. The distribution of fish in different habitats at three ontogenetic stages (new settler, juvenile, and adult) was investigated in coral-dominated and algal-dominated sites at two reefs (fringing reef and inner reef of motu). Three main ontogenetic patterns in habitat use were identified: (1) species that did not change habitats between new settler and juvenile life stages (60% of species) or between juvenile and adult stages (55% of species—no ontogenetic shift); (2) species that changed habitats at different ontogenetic stages (for the transition “new settler to juvenile stage”: 15% of species; for the transition “juvenile to adult stage”: 20% of species); and (3) species that increased the number of habitats they used over ontogeny (for the transition “new settler to juvenile stage”: 25% of species; for the transition “juvenile to adult stage”: 25% of species). Moreover, the majority of studied species (53%) showed a spatial variability in their ontogenetic pattern of habitat use according to alternate reef states (coral reef vs algal reef), suggesting that reef state can influence the dynamics of habitat associations in coral reef fish.  相似文献   

10.
The live reef fish trade (LRFT) is one of the greatest but least-quantified sources of fishing pressure for several species of large coral reef fish across the Indo-Pacific. For the first time we quantify the localized impact of the LRFT. We collected data from three LRFT traders in northern Borneo, which yielded information on daily fishing effort and the species and mass of all fishes sold every day by individual fishers or vessels over 2, 3 and 8 years. Total monthly catch and relative abundance (catch-per-unit-effort) declined significantly in several species, including the most valuable species the Napoleon wrasse (Cheilinus undulatus, estimated changes of -98 and -78% over 8 years in catch and relative abundance, respectively) and lower-value bluelined groupers (Plectropomus oligocanthus: -99 and -81%) and Epinephelus groupers (-89 and -32%). These severe declines were rapid, species-specific and occurred in the first 2-4 years of the dataset and are, we believe, directly attributable to the LRFT. This has crucial implications for future data collection and monitoring if population collapses in other parts of the LRFT and similar wildlife trades are to be successfully detected.  相似文献   

11.
Coral reef monitoring is a reliable tool to assess the effect of climate change as corals are sensitive to increases in water temperatures between 30 °C and 35 °C resulting in bleaching - a whitening process when the corals lose their color and the reefs begin to die. Existing satellite-based monitoring products facilitate coral bleaching monitoring over large spatial scales, but their use in predicting local scale stress that influences the bleaching severity across reefs is limited. In this paper, we describe a Stationary Reef Monitoring System (SRMS) that monitors the time evolution of coral reefs through the photography of nearby coral clusters. Simultaneously, the SRMS measures and records environmental parameters such as temperature, solar irradiance (PAR), and salinity in the waters surrounding the coral colonies. When deployed in the sea, the SRMS detected a 0.1–0.4 °C variability in temperature between the in situ and satellite datasets. The SRMS uses color photography along with quantitative data on environmental parameters to monitor the health of corals and eliminates the need for physical/visual verification of coral health by a diver. By this approach, one can determine the stress thresholds of corals and identify the vulnerable and resilient reefs so as to prioritize conservation efforts.  相似文献   

12.
13.
14.
Organisms often undergo shifts in habitats as their requirements change with ontogeny.Upon entering a new environment, it is vitally important to be able to rapidly assess predation risk. Predation pressure should selectively promote mechanisms that enable the rapid identification of novel predators. Here we tested the ability of a juvenile marine fish to simultaneously learn the identity of multiple previously unknown predators. Individuals were conditioned with a 'cocktail' of novel odours (from two predators and two non-predators) paired with either a conspecific alarm cue or a saltwater control and then tested for recognition of the four odours individually and two novel odours (one predator and one non-predator) the following day. Individuals conditioned with the 'cocktail' and alarm cue responded to the individual 'cocktail' odours with an antipredator response compared to controls. These results demonstrate that individuals acquire recognition of novel odours and that the responses were not due to innate recognition of predators or due to a generalised response to novel odours. Upon entering an unfamiliar environment prey species are able to rapidly assess the risk of predation, enhancing their chances of survival, through the assessment of chemical stimuli.  相似文献   

15.
16.
The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf‐grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef‐wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow‐water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.  相似文献   

17.
Coral cover has declined rapidly on Caribbean reefs since the early 1980s, reducing carbonate production and reef growth. Using a cross-regional dataset, we show that widespread reductions in bioerosion rates—a key carbonate cycling process—have accompanied carbonate production declines. Bioerosion by parrotfish, urchins, endolithic sponges and microendoliths collectively averages 2 G (where G = kg CaCO3 m−2 yr−1) (range 0.96–3.67 G). This rate is at least 75% lower than that reported from Caribbean reefs prior to their shift towards their present degraded state. Despite chronic overfishing, parrotfish are the dominant bioeroders, but erosion rates are reduced from averages of approximately 4 to 1.6 G. Urchin erosion rates have declined further and are functionally irrelevant to bioerosion on most reefs. These changes demonstrate a fundamental shift in Caribbean reef carbonate budget dynamics. To-date, reduced bioerosion rates have partially offset carbonate production declines, limiting the extent to which more widespread transitions to negative budget states have occurred. However, given the poor prognosis for coral recovery in the Caribbean and reported shifts to coral community states dominated by slower calcifying taxa, a continued transition from production to bioerosion-controlled budget states, which will increasingly threaten reef growth, is predicted.  相似文献   

18.
Synopsis Development of the fish community on a submerged 16 m barge and variation in fish abundance on nearby transects were surveyed twice monthly for twenty months. A steady increase in abundance was observed for certain fishes on the barge, whereas a few species exhibited distinct seasonal variation on both the barge and transects. Most of the seasonal species settled between March and May.Some seasonal species appeared to be site selective in their settlement and consequently settled juveniles were clumped in their distribution. An abundance of preferred topographical features may be why settlement was relatively high at the study site and indirectly why predators became significantly (r3 = 7.67***, N = 37) more abundant at the study area during the months of maximum prey settlement. Concurrent settlement of several species during the same few months may be important because juveniles become an abundant food source to predators during those few months only. Periodic swamping of predators by abundant juvenile prey may improve the chances for individuals of rarer prey species to be overlooked and therefore be succesfully recruited.  相似文献   

19.
Here we present a review of how the study of the geographic distribution of genetic lineages (phylogeography) has helped identify management units, evolutionary significant units, cryptic species, and areas of endemism, and how this information can help efforts to achieve effective conservation of coral reefs. These studies have confirmed the major biogeographic barriers that were originally identified by tropical species distributions. Ancient separations, identified primarily with mtDNA sequence comparisons, became apparent between populations on each side of the barriers. The general lack of correlation between pelagic larval duration and genetic connectivity across barriers indicates that life history and ecology can be as influential as oceanography and geography in shaping evolutionary partitions within ocean basins. Hence, conservation strategies require a recognition of ecological hotspots, those areas where habitat heterogeneity promotes speciation, in addition to more traditional approaches based on biogeography. Finally, the emerging field of genomics will add a new dimension to phylogeography, allowing the study of genes that are pertinent to recent and ongoing differentiation, and ultimately providing higher resolution to detect evolutionary significant units that have diverged in an ecological time scale.  相似文献   

20.
Fornshell  J. A. 《Hydrobiologia》1994,(1):295-301
A study of areal distribution of the copepod nauplii near mangrove covered cays on the barrier reef of Belize was begun in the summer of 1989 and continued in the spring of 1990 with the collection of twenty samples from four locations. At distances in the order of 100 of meters to 1000 from the mangrove prop roots there were thousands of nauplii m–3. In the samples from Twin Cays where the plankton tows were made 15 m from the prop roots or less the average was 387 nauplii m–3. Copepod nauplii compose 60% of the metazoan plankton abundance in all of the samples. Harpacticoid nauplii were the largest single component of the plankton in every sample; they account for 42% to 76% of the copepod nauplii. Cyclopoid nauplii represent 13 to 40% and are second to the harpacticoid nauplii. Calanoid nauplii account for 2% to 23% of the copepod nauplii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号