首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory experiments were performed to assess the effects of age, status (fresh versus freezekilled), and storage regime on the suitability of house fly, Musca domestica L. (Diptera: Muscidae) pupae as hosts for Muscidifurax raptor Girault & Saunders, M. raptorellus Kogan & Legner, M. zaraptor Kogan & Legner, Spalangia cameroni Perkins, Trichomalopsis sarcophagae (Gahan) and Urolepis rufipes (Ashmead) (Hymenoptera: Pteromalidae). Production of all species was maximized on pupae aged 24 + h post-pupation. Fresh pupae could not be refrigerated at 10°C or less, or at 15°C without a significant decline in their suitability as hosts. Although production of S. cameroni was essentially limited to the use of fresh house fly pupae, M. raptor , M. raptorellus , M. zaraptor , T. sarcophagae and U. rufipes could be reared on either fresh or freeze-killed pupae stored at - 20 °C for up to 6 months prior to parasitism. The suitability of freeze-killed pupae declined during storage when used for production of male and female M. raptorellus and M. zaraptor , and possibly for male T. sarcophagae . No other effects of storage on parasitoid production were detected. These results suggest that insectaries can stockpile fly pupae in freezers during times of overproduction for future use in mass-rearing M. raptor, M. raptorellus, M. zaraptor, T. sarcophagae and U. rufipes as biocontrol agents of filth flies.  相似文献   

2.
Independent studies were performed in Canada and in Denmark to assess the survival of parasitic wasps (Hymenoptera: Pteromalidae) wintering in puparia of house fly, Musca domestica Linnaeus (Diptera: Muscidae). Data in Canada were collected for Muscidifurax raptorGirault & Saunders, M. raptorellus Kogan & Legner, M. zaraptor Kogan & Legner, Nasonia vitripennis(Walker), Spalangia cameroni Perkins, Trichomalopsis sarcophagae (Gahan) and Urolepis rufipes (Ashmead) in three microsites at an outdoor cattle facility in southern Alberta. Survival was highest for N. vitripennis, T. sarcophagae and U. rufipes, ranging from near zero to c. 7%. No survival was observed for S. cameroni. Daily mean values for ambient air temperature (DMAT) averaged about -3.5 degrees C during exposure periods. Data for Denmark were collected for M. raptor, S. cameroni and U. rufipes in a dairy barn and in a swine barn. Survival of M. raptor and U. rufipes was higher than that of S. cameroni in the dairy barn (DMAT = 8.6 degrees C), with the three species having similar survival in the swine barn (DMAT = 15.4 degrees C). In both studies, parasitoids in egg stages were least likely to survive. These results identify the potential for T. sarcophagae and U. rufipes to be commercialized for use in northern climates as biocontrol agents for nuisance flies, compare directly the cold-hardiness of commercialized species (i.e. all of the above species excluding T. sarcophagae and U. rufipes), and document the importance of microsite on winter survival.  相似文献   

3.
Urolepis rufipes Ashmead, a pteromalid wasp, was recently discovered parasitizing house fly and stable fly pupae in eastern Nebraska dairies. Studies have been conducted on the biology of this parasite to evaluate its potential as a biological control agent of stable flies (Stomoxys calcitrans (L.] and house flies (Musca domestica L.). House fly pupae were suitable as hosts for U.rufipes at all ages; however, significantly higher parasitism occurred on host pupae aged 96-120 h. Parasite-induced mortality (host mortality without progeny production) was higher than for other pteromalid parasites of filth flies under similar conditions. Parasitism increased with parasite--host ratio at 20 degrees C; however, the opposite was noted at 30 degrees C for parasite--host ratios ranging from 5:50 to 50:50. Fly eclosion decreased as parasite--host ratio increased at 20 degrees C, and no host eclosion occurred at the highest parasite--host ratios (20:50 and 50:50) at 30 degrees C. Females produced an average of 18.6 female and 7.6 male progeny. 88% of the progeny were produced during the first 6 days post parental eclosion. The short life span, low progeny emergence rate and high per cent host eclosion, in comparison with other parasite species, suggests that the Nebraska strain of U.rufipes may not an effective biological control agent of house flies.  相似文献   

4.
Commercially obtained Nasonia vitripennis Walker and Muscidifurax raptorellus Kogan & Legner were released weekly for 12 wk into a high-rise, caged-layer poultry house. After the release period, parasitoids were sampled using sentinel house fly (Musca domestica L.) pupae that were either laboratory-reared or field-collected as larvae and exposed for 2, 4, 7, and 14 d. Parasitoid-induced mortality was observed in 31% of laboratory colony pupae and in 26% of field-collected pupae, whereas successful parasitism rates of 48 and 51% were observed from these pupal sources, respectively. Parasitism was primarily by M. raptorellus (88%), and Muscidifurax raptor Girault & Sanders (11%), while N. vitripennis accounted for <1%. Percent female progeny ranged from 43%, in M. raptorellus to 76% in N. vitripennis. Parasitoid emergence from 2-d exposed sentinel pupae was the lowest of all treatments. Parasitoid emergence from 7-d exposed sentinel pupae was the highest of all treatments. We found no differences between pupal source, suggesting that when sampling for M. raptor, M. raptorellus, and N. vitripennis, in poultry facilities, pupal source is not a confounding factor.  相似文献   

5.
Three laboratory experiments were performed to assess parasitization of freeze-killed house fly puparia, buried 0 to 6 cm in media, by Muscidifurax raptor Girault & Saunders, Muscidifurax raptorellus Kogan & Legner, Muscidifurax zaraptor Kogan & Legner, Trichomalopsis sarcophagae (Gahan) and Urolepis rufipes (Ashmead) (Hymenoptera: Pteromalidae). Virtually no parasitization occurred at depths greater than 1 cm in large arenas (988 cm2) with densities of 0.3 puparia and 0.008 female parasitoids per cm2. Parasitization was observed at depths as great as 4 cm for three of five species in small arenas (3 cm2) with densities of 6.4 puparia and 1.0 female per cm2. Combined across experiments, M. raptor achieved the highest level of parasitization, followed by M. zaraptor, M. raptorellus, U. rufipes, and T. sarcophagae. The greatest number of F1 females was produced by the gregarious species T. sarcophagae (834 female female) and M. raptorellus (708 female female), and then by the solitary species M. raptor (530 female female), M. zaraptor (365 female female) and U. rufipes (163 female female). High parasitization by M. raptor and high production of offspring by T. sarcophagae identify these species as being particularly attractive as biological control agents.  相似文献   

6.
Throughout the winter and early spring months, stable fly, Stomoxys calcitrans (L.), and house fly, Musca domestica L., puparia were collected from silage, hay, and manure from six dairies in northwestern Florida and evaluated for parasitism. Of the puparia producing flies or parasites, 23% of the stable flies and 46% of the house flies were parasitized. The predominant parasite observed attacking muscoid flies (76% for stable flies and 58% for house flies) was Spalangia cameroni Perkins. Muscidifurax sp. was recovered from 11 and 36% of the stable fly and house fly pupae, respectively. Other parasite species encountered were Spalangia endius Walker and S. nigroaenea Curtis. Significantly more parasitized fly pupae were collected from silage than from hay residues or manure. Winter and early spring parasite populations in northwestern Florida appear to be present as long as viable fly pupae are available to support the developing parasites.  相似文献   

7.
The ability of Spalangia cameroni Perkins, Spalangia endius Walker, and Muscidifurax raptorellus Kogan and Legner to locate and attack stable fly hosts was evaluated under laboratory conditions. Postfeeding third-instar stable fly larvae were released and allowed to pupate in two arena types: large 4.8 liter chambers containing a field-collected, soiled equine bedding substrate; or 120-ml plastic cups containing wood chips. At the time of fly pupariation, parasitoids were released and permitted 72 h to locate and attack hosts. On average, parasitism rates of freely accessible stable fly pupae in cups were not significantly different between parasitoid species. However, parasitism rates in chambers containing either Spalangia spp. were ≈50-fold more than M. raptorellus. Additional intraspecies analysis revealed that parasitism rates both by S. cameroni and S. endius were not significantly different when pupae were freely accessible or within bedding, whereas M. raptorellus attacked significantly more pupae in cups than in the larger chambers where hosts were distributed within bedding. These results suggest that Spalangia spp. are more suited to successfully locate and attack hosts in habitats created by equine husbandry in Florida. Therefore, commercially available parasitoid mixtures containing Muscidifurax spp. may be ineffective if used as a control measure at Florida equine facilities.  相似文献   

8.
Filth fly parasites reared by commercial insectaries were released on two dairies (MO, DG) in southern California to determine their effect on populations of house flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.). Spalangia endius Walker, Muscidifurax raptorellus Kogan and Legner, and Muscidifurax zaraptor Kogan and Legner were released on the MO dairy from 1985 to 1987 in varying quantities. Parasitism by Muscidifurax zaraptor on the MO dairy was significantly higher (P less than 0.05) from the field-collected stable fly (4.4%) and house fly (12.5%) pupae, compared with a control dairy (0.1%, stable fly; 1.3%, house fly). Muscidifurax zaraptor, released from April through October during 1987 on the DG dairy (350,000 per month), was not recovered in a significantly higher proportion from either fly species relative to the corresponding control dairy. No specimens of Muscidifurax raptorellus were recovered from the MO dairy. Parasite treatments had no apparent effect on adult populations of either fly species or on overall parasitism rate of field-collected stable fly (16.8%, MO; 17.2%, DG) and house fly (23.3%, MO; 20.9%, DG) pupae. Spalangia spp. were the predominant parasites recovered from field-collected stable fly and house fly pupae on all four dairies. Sentinel house fly pupae placed in fly-breeding sites on both release dairies were parasitized at a significantly higher rate, as compared with sentinel pupae on control dairies. The generic composition of parasites emerging from sentinel house fly pupae was 20.6% Spalangia spp. and 73.2% Muscidifurax spp., whereas in field-collected house fly pupae, Spalangia spp. and Muscidifurax spp. constituted 74.3 and 19.6% of the parasites, respectively.  相似文献   

9.
Parasitoid-induced mortality of house fly, Musca domestica L., pupae and parasitoid progeny emergence by four species of pteromalid parasitoids, Muscidifurax raptor Girault & Sanders, M.zaraptor Kogan & Legner, Spalangia cameroni Perkins and S.endius Walker, were determined for a 24 h exposure period using parasitoid: host ratios ranging from 1:2 to 1:50. When the number of parasitoids was held constant (n = 5) and the numbers of hosts varied, and when the number of hosts was held constant (n = 100) and the number of parasitoids varied, both the number of pupae killed per parasitoid and the number of parasitoid progeny per parasitoid increased with increasing parasitoid:host ratios to reach an upper limit asymptotically. Maximum values were, respectively: M.raptor (14.7, 11.1), M.zaraptor (12.3, 9.3), S.cameroni (16.9, 5.5), S.endius (14.8, 9.7) with no consistent effects attributed to parasitoid interference. For M.raptor and S.cameroni at parasitoid:host ratios of 1:10, the pupal mortality and progeny emergence were determined for a 24 h exposure period when hosts were distributed in poultry manure at four levels of aggregation ranging from clumped to uniform. Pupal mortality was least in clumped distributions, while parasitoid progeny emergence was not significantly different.  相似文献   

10.
Commercially reared parasitoids were released into three high-rise, caged-layer poultry houses; one house received only N. vitripennis Walker, the second house received only M. raptorellus Kogan & Legner, and the third house received an equal ratio of both species. Overall, house fly parasitism by M. raptorellus was never higher than 7% in any house. Most parasitism in the M. raptorellus release house was attributed to N. vitripennis. Parasitism of house fly pupae by M. raptorellus did not significantly increase during or after the 6-wk release period in the house that received both parasitoids. However, a depression in total parasitism was not detected when releases of the two species were made in this house.  相似文献   

11.
The objective of this study was to evaluate the suitability of killed house fly (Musca domestica L) pupae for production of two economically important pupal parasitoids. Two-day-old fly pupae were subjected to heat shock treatments of varying temperatures and durations in an oven at >or=70% RH; exposure to temperatures of 55 degrees C or higher for 15 min or longer resulted in 100% mortality. Exposure to 50 degrees C resulted in 40 and 91% mortality at 15 and 60 min, respectively. All (100%) pupae placed in a -80 degrees C freezer were killed after 10-min exposure; exposure times of <5 min resulted in <21% mortality. Progeny production of Spalangia cameroni Perkins and Muscidifurax raptor Girault and Sanders (Hymeoptera: Pteromalidae) from pupae killed by heat shock or 50 kR of gamma radiation was not significantly different from production on live hosts on the day when pupae were killed. Freeze-killed pupae produced 16% fewer S. cameroni than live pupae and an equivalent amount of M. raptor progeny on the day when pupae were killed. When killed pupae were stored in freezer bags at 4 degrees C for 4 mo, heat-killed, irradiated, and freeze-killed pupae remained as effective for production of M. raptor as live pupae. Production of S. cameroni on heat-killed and irradiated pupae was equal to parasitoid production on live pupae for up to 2 mo of storage, after which production on killed pupae declined to 63% of that observed with live pupae. Production of S. cameroni on freeze-killed pupae was 73-78% of production using live pupae during weeks 2-8 of storage and declined to 41 and 28% after 3 and 4 mo, respectively. Killing pupae by heat shock provides a simple and low-cost method for stockpiling high-quality hosts for mass-rearing both of these filth fly biological control agents.  相似文献   

12.
The pteromalid wasp, Muscidifurax zaraptor Kogan and Legner, was released at three locations at a dairy in May before housefly and stable fly breeding had begun. Freeze-killed housefly pupae were placed adjacent to the emerging parasites at biweekly intervals for a 6-week period. Hosts placed out weeks 0 and 2 were heavily parasitized. Decreased parasitism in hosts placed out at week 4 suggested that many of the M. zaraptor had dispersed or died. High parasitism of hosts placed in the field at week 6 was the result of second generation parasites emerging from pupae placed out at week 0. Parasitism of freeze-killed housefly pupae placed 6 m and in the four cardinal directions from the release points was similar but lower than for hosts placed adjacent to the emerging parasites. The study demonstrated that emerging M. zaraptor readily utilized nearby freeze-killed housefly pupae but the availability of these hosts did not deter the parasites from searching for additional hosts.  相似文献   

13.
In order to verify the occurrence of diapause, preference for pupation sites and hymenopteran parasitism, the pupae of the horn fly, Haematobia irritans (Diptera: Muscidae), were collected from undisturbed cattle dung pats in pastures, and adults of the fly were sampled from cattle in São Paulo State, south-eastern Brazil, from April 1993 to July 1994. Diapause was verified in 7.7% of pupae sampled from pastures in June and July of 1993 and in 9.9% of those sampled in May, June and July of 1994 (overall rate of 9.1%). Approximately 8.3% of the pupae were parasitized by microhymenopterans, mostly Spalangia nigroaenea and S.cameroni (Hymenoptera: Pteromalidae). Horn fly pupae were found almost exclusively inside the pat or in the soil immediately beneath and adjacent to it, and very few were collected elsewhere. Pupa mortality was 54.4% and did not change significantly during the year, but mortality was greater among pupae collected in pastures when compared to those obtained from experimental pats, lacking natural enemies.  相似文献   

14.
Muscidifurax zaraptor Kogan and Legner (Hymenoptera: Pteromalidae) was released at three rates in nine beef cattle feedlots in eastern Nebraska to measure dosage response. Dosage response was measured by the percentage parasitism of sentinel house fly pupae. Releases were made from a single location near the center of the pen at three feedlots, from two locations within the pen at three feedlots, and from four corners of the pen at three feedlots. One-time releases initiated held propagation of M. zaraptor using freeze-killed house fly pupae as hosts. Three treatment rates, averaging 4480, 20,300, and 37,100 parasitoids, were released weekly over a 15-week period with each of the three release methods receiving a low, medium, or high treatment rate. All nine release sites produced significantly higher levels of parasitoid emergence and sentinel host mortality than sentinel hosts at two control facilities. The three sites receiving the high treatment rate averaged 38% host mortality, compared with 26% for the medium treatment rate and 17% for the low treatment rate. The two control sites averaged 2% host mortality. No significant differences could be detected in the number of release stations except at the four-station method using the low treatment rate. High temperatures during at least two of the weekly periods were detrimental to the released parasitoids.  相似文献   

15.
Larvae of Anastrepha ludens and A. serpentina that developed in mango and sapodilla fruits, respectively, were exposed to Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) and sequentially exposed as pupae to Coptera haywardi (Oglobin) (Hymenoptera: Diapriidae). Sequential exposure to both parasitoid species contributed to a decrease in fruit fly emergence due to higher levels of parasitism, which varied according to fruit type. In creole mango, D. longicaudata represented the highest percentage of parasitism. C. haywardi parasitism was greater in pupae from Ataulfo mangos and sapodilla, where the pulp size and volume may have acted as a refuge, allowing fly larvae to escape and leaving a greater number of unparasitised pupae available to C. haywardi. Similar results were obtained under field cage conditions, but the level of parasitism by C. haywardi was lower, suggesting that its effectiveness has some limitations under natural conditions. Our results suggest that both species can exert complementary parasitism, which represents an alternative worth to investigate under open field conditions.  相似文献   

16.
  • 1 Microctonus caudatus parasitizes the adults of Harpalus rufipes. It is bivoltine, and its summer generation occurred in up to 27% of the study population of H.rufipes. The mean level of parasitism throughout both 1973 and 1974 was 8.4%.
  • 2 Many larvae of M.caudatus are found in one host; the maximum number was 92, mean 20.8. There was indirect evidence of competition between larvae within the host, so that about sixty larvae, at most, were able to develop fully.
  • 3 Larvae of the summer generation of M.caudatus emerged from host beetles between the end of July and mid September, invariably killing their host. The larvae pupated in the soil and adult parasites emerged from the pupal cocoons about 14 days later.
  • 4 M.caudatus is parthenogenetic, and individuals oviposited readily in adult beetles in the laboratory. A culture of the parasite was maintained for almost a year at 15°C under artificial light of natural outdoor daylength, when four generations developed in the year. Time taken for development within the host was longest under short day conditions.
  相似文献   

17.
The efficacy of the pupal parasitoid Spalangia cameroni Perkins as a biological control agent was tested against house flies Musca domestica Linnaeus and stable flies Stomoxys calcitrans (Linnaeus) in one dairy cattle and two pig installations in Denmark. Weekly releases of S. cameroni from April through to September-October 1999 and 2000 resulted in significant suppressions of house fly populations to below nuisance level, whereas no effect on stable flies was found. Parasitism was significantly higher in the release years compared to the control years, but was below 25% averaged over the fly season for each farm. A statistical model based on a functional relationship between the innate capacity of increase of the two fly species and three explanatory variables (air temperature, fly density and parasitism) provided a fairly good fit to data with the abundances of house flies and stable flies explained mostly by temperature, but intra- and interspecific competition, and parasitism had a significant effect as well. Overall, the model was capable of explaining 14% and 6.6% of the total variation in data for house fly and stable fly, respectively. Spalangia cameroni was the predominant parasitoid to emerge from exposed house fly pupae, but from mid summer onwards Muscidifurax raptor Girault & Sanders (Hymenoptera: Pteromalidae) was also quite common. The study indicated that biological control of house flies can be an efficient alternative to chemical control.  相似文献   

18.
Indoor releases of Spalangia cameroni Perkins and Muscidifurax raptor Girauelt & Sanders (Hymenoptera: Pteromalidae) were conducted in five organic dairy cattle farms to evaluate the overall effect on parasitism and efficiency at different pupal depths of Musca domestica L. (Diptera: Muscidae). Overall, parasitism increased significantly from 5.3 to 28.8–28.7% of the exposed house fly pupae due to the release of pupal parasitoids. Spalangia cameroni was by far the most dominant species, contributing approximately 71.5–72.3% of the parasitism in the release and post-release period, whereas 20.9–24.4% could be attributed to Muscidifurax raptor. A naturally occurring ichneumonid, Phygadeuon fumator Gravenhorst (Hymenoptera: Ichneumonidae) parasitized 4.1–6.8% of the exposed fly pupae. The placement of house fly pupae at two depths of the bedding, 5–10 and 15–20 cm had no significant effect on overall parasitism whereas M. raptor attacked the house fly pupae significantly more when placed in the 5–10 cm stratum (10.0%) compared to the 15–20 cm stratum (3.2%). The two pupal depths had no significant effect on parasitism by S. cameroni and P. fumator. Albeit S. cameroni contributed significantly to overall parasitism, M. raptor had a significantly higher attack rate when first a female had located bags with sentinel pupae. Based on the above results, however, S. cameroni seems the most appropriate species for managing house flies in straw bedded dairy cattle farms in Denmark. A biological control strategy of simultaneous releases of S. cameroni and M. raptor is discussed.  相似文献   

19.
The parasitic wasp Muscidifurax zaraptor Kogan & Legner was mass-reared in the field to control house flies, Musca domestica L., on two Nebraska beef cattle confinements. About 50,000 freeze-killed house fly pupae were exposed to a single release of M. zaraptor in the field. Placement of six additional cohorts of 50,000 freeze-killed pupae at the release sites at 2-wk intervals resulted in a mean parasite emergence of 56.4% over the study period. Mean fly mortality of 37.3 and 25.9% occurred in sentinel pupae placed around the perimeter of two release sites, compared with 3.9% for two control sites. We demonstrated a negative correlation between host reduction in sentinel cohorts and distances the cohorts were placed from parasite release sites. However, data indicated that other environmental factors also influenced the success of M. zaraptor in locating sentinel hosts. Correlation between mortality in sentinel pupae and numbers of parasites released was not evident. Temperatures above approximately 28 degrees C appeared to reduce the effectiveness of M. zaraptor.  相似文献   

20.
Release of parasitic wasps (Hymenoptera: Pteromalidae) as biological control agents for house flies and stable flies in livestock confinements has had variable success. In part, this may reflect a lack of knowledge regarding the optimal distance to be used between parasitoid release stations. In the current study, we assessed the effect of linear distance on host parasitism by the wasp Spalangia cameroni Perkins. In open fields at distances ranging from 1 m to 60 m from a central point, house fly puparia were placed in a mixture of pine shavings soiled with equine manure, urine, and alfalfa hay. Releases of S. cameroni then were made using a 5:1 host: parasitoid ratio. Host pupae were parasitized at all distances, with the highest rate of total parasitism (68.9%) recorded ≤ 5 m from the release site. Analyses of results using non-linear and linear models suggest that S. cameroni should be released in close proximity to host development areas. Additionally, releases may not be suitable in pasture situations where long-distance flight is required for control. However, further testing is needed to examine the effect of density-dependent dispersal and diffusion of S. cameroni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号