首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native Paralithodes camtschaticae hemocyanin is found as a mixture of dodecamers (24S; 80%) and hexamers (16S; 20%). Removal of Ca2+ ions by dialysis against EDTA-containing buffer solution at neutral pH induces complete dissociation of the 24S form into the 16S form. Under these conditions, a further increase in pH to 9.2 produces complete dissociation of the hexamers into monomers (5S). In both cases, the dissociation process is reversible. The dodecamer (24S) is composed of two different hexamers which can be discriminated only by ion-exchange chromatography in the presence of Ca2+ ions. At alkaline pH and in the presence of EDTA, two major monomeric fractions can be separated by ion-exchange chromatography: ParcI (60%) and ParcII (40%). The reassociation properties of the two fractions were studied separately to define their ability to form hexamers and dodecamers. The oxygen-binding properties of the different aggregation states were investigated. Native hemocyanin binds O2 co-operatively (nH = 3) and with low affinity (p50 approximately 103 Torr). The two monomeric fractions, ParcI and ParcII, are not co-operative and the affinity is twice that of the native protein (p50 approximately 65 and 52 Torr). Oxygen-binding measurements of native hemocyanin carried out at different pH values indicate a strong positive Bohr effect within the pH range 6.5-8.0 and an increase in oxygen affinity at pH below 6.5.  相似文献   

2.
The interaction of L ‐lactate and divalent cations with Carcinus maenas hemocyanin has been probed by electrospray ionization mass spectrometry under conditions preserving noncovalent interactions (native ESI‐MS). C. maenas native hemocyanin in the hemolymph occurs mainly as dodecamers and to a lesser extent as hexamers. A progressive acidification with formic acid after alkaline dissociation resulted in the preferential recruitment of the two lightest subunits into light dodecamers, a molecular complex absent from native hemolymph, in addition to regular dodecamers and hexamers. Addition of L ‐lactic acid also induced the recruitment of these subunits, even at alkaline pH. A dodecamer‐specific subunit is needed to enable aggregation over the hexameric state. Experiments with EDTA suggested the existence of different binding sites and association constants for divalent cations within hexameric structures and at the interface between two hexamers. L ‐lactic acid specific interaction with the lightest subunits was not inhibited by removal of the divalent cations. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Arthropod hemocyanins (Hcs) transport and store oxygen and are composed of six subunits, or multiples thereof depending on the species. Calappa granulata Hc is found as a mixture of dodecamers (95%) and hexamers (5%). Removal of calcium ions and alkaline pH induce an incomplete partially reversible dissociation of dodecameric Hc. Two-dimensional electrophoretic pattern of dissociated Hc indicated a large heterogeneity in Hc subunit: most differences are likely to be explained by post-translational modifications. Dodecameric Hc showed a large Bohr effect (Deltalog P50/DeltapH = -0.95) and a normal cooperativity (h50 values = 2.7 +/- 0.2) in the presence of 10 mM CaCl2. The hexameric molecule displayed lower Bohr effect and cooperativity than the dodecamer. Lactate effect on the oxygen affinity (Deltalog P50 = 0.55) and the increase of lactate concentrations in animals kept in emersion were related to the increased oxygen requirements that occur during hypoxia in vivo. Calcium affects oxygen affinity only at high concentrations: this Hc appeared to lack the calcium high-affinity binding sites found in other species. The effect of temperature on both oxygen affinity and cooperativity was measured in the absence and presence of 10 mM lactate, allowing calculation of the exothermic contribution of lactate binding (DeltaH = -25 kJ mol(-1)).  相似文献   

4.
P D Jeffrey 《Biochemistry》1979,18(12):2508-2513
Examination and measurement of electron micrographs of negatively stained hemocyanin molecules from Cherax destructor show that the predominant aggregated forms, the 16S and 24S components, are typical structures for arthropod hexamers and dodecamers, respectively. In Cherax hemocyanin the hexamers are formed from the monomeric (Mr congruent to 75,000) subunits, M1 and M2, while the dodecamers contain in addition a dimeric (Mr congruent to 150,000) subunit, M3'. Studies of the composition of solutions of the subunits M1 and m2 to which calcium ions have been added at pH 7.8 show that, under these conditions, reassembly occurs to particles indistinguishable from native hexamers. It is noteworthy that dodecamers are not seen since this confirms the previous suggestion that incorporation of the dimeric subunit in the assembly process is necessary for their formation. The results obtained from Cherax hemocyanin are related to those of previous structural studies of arthropod hemocyanins. In particular, the possible controlling role of certain specific subunits in arthropod hemocyanin oligomers containing more than one kind of subunit is illustrated with a model for the Cherax dodecamer, in which the dimeric subunit is shared between the two halves of the molecule.  相似文献   

5.
Summary Structural and functional studies of the hemocyanin of the semi-terrestrial ghost crab,Ocypode quadrata, demonstrate a variety of differences in comparison to the hemocyanin of aquatic crabs. These differences may be related to the terrestrial habit of this crab. Unlike aquatic crabs, the major (56%) blood component is the hexamer; the remaining 44% is dodecamer. The hexamers and dodecamers are not in rapid equilibrium. Electrophoretic analysis of the subunit composition indicates three major components referred to as 1, 3, and 4, and one minor component referred to as component 2. These components, although electrophoretically distinct, are alike immunologically. Components 1 and 2 are essentially absent from purified hexamers, whereas they compose 1/3 of the subunits in dodecamers. These results suggest that they are involved in linking hexamers to form dodecamers, and that two, rather than one, subunits are involved in the bridge. Oxygen-binding measurements show a higher degree of cooperativity, and a much reduced allosteric effect ofl-lactate on the dialyzed hemocyanin as compared to the hemocyanin of aquatic crabs. Exercise rapidly, induces a large drop in hemolymph pH (0.5 units) and a corresponding increase in lactate concentrations (to 10 mM).  相似文献   

6.
M Brouwer  B Serigstad 《Biochemistry》1989,28(22):8819-8827
Hemocyanin of the horseshoe crab Limulus polyphemus is composed of 48 oxygen-binding subunits, which are arranged in eight hexameric building blocks. Allosteric interactions in this oligomeric protein have been examined by measurement of high-precision oxygen-equilibrium curves, using an automated Imai cell. Several models were compared in numerical analysis of the data. A number of conclusions can be drawn with confidence. (1) Oxygen binding by Limulus hemocyanin cannot satisfactorily be described by the two-state MWC model [Monod, J., Wyman, J., & Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118] for allosteric transitions with either the hexamer or dodecamer as the allosteric unit. (2) Of the models tested, the data sets can be best described by an extended MWC model that allows for an equilibrium, within the 48-subunit ensemble, between cooperative hexamers and cooperative dodecamers. The model invokes T and R states for both hexamers (T6 and R6) and dodecamers (T12 and R12). Allosteric effectors modulate oxygen affinity and cooperativity by affecting the R to T equilibria within hexamers and dodecamers and by shifting the equilibria between hexamers and dodecamers. (3) The fitted model parameters show that under most conditions the intersubunit contacts within T-state hexamers are more constrained than those within T-state dodecamers. (4) The oxygen affinities of the hexameric and dodecameric R states are the same, but under all conditions examined the conformation of the fully oxygenated molecule is that of the dodecameric R state. (5) Between pH 7.4 and pH 8.5 the dodecameric T state has a higher affinity for oxygen than the hexameric T state, allowing for "T-state cooperativity".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The hemocyanin of the tiger shrimp, Penaeus monodon, was investigated with respect to stability and oxygen binding. While hexamers occur as a major component, dodecamers and traces of higher aggregates are also found. Both the hexamers and dodecamers were found to be extremely stable against dissociation at high pH, independently of the presence of calcium ions, in contrast to the known crustacean hemocyanins. This could be caused by only a few additional noncovalent interactions between amino acids located at the subunit-subunit interfaces. Based on X-ray structures and sequence alignments of related hemocyanins, the particular amino acids are identified. At all pH values, the p50 and Bohr coefficients of the hexamers are twice as high as those of dodecamers. While the oxygen binding of hexamers from crustaceans can normally be described by a simple two-state model, an additional conformational state is needed to describe the oxygen-binding behaviour of Penaeus monodon hemocyanin within the pH range of 7.0 to 8.5. The dodecamers bind oxygen according to the nested Monod-Whyman-Changeaux (MWC) model, as observed for the same aggregation states of other hemocyanins. The oxygen-binding properties of both the hexameric and dodecameric hemocyanins guarantee an efficient supply of the animal with oxygen, with respect to the ratio between their concentrations. It seems that under normoxic conditions, hexamers play the major role. Under hypoxic conditions, the hexamers are expected not to be completely loaded with oxygen. Here, the dodecamers are supposed to be responsible for the oxygen supply.  相似文献   

8.
We assessed the effects of cold and submergence on blood oxygen transport in common map turtles (Graptemys geographica). Winter animals were acclimated for 6-7 wk to one of three conditions at 3 degrees C: air breathing (AB-3 degrees C), normoxic submergence (NS-3 degrees C), and hypoxic (PO2=49 Torr) submergence (HS-3 degrees C). NS-3 degrees C turtles exhibited a respiratory alkalosis (pH 8.07; PCO2=7.9 Torr; [lactate]=2.2 mM) relative to AB-3 degrees C animals (pH 7.89; PCO2=13.4 Torr; [lactate]=1.1 mM). HS-3 degrees C animals experienced a profound metabolic acidosis (pH 7.30; PCO2=7.9 Torr; [lactate]=81 mM). NS-3 degrees C turtles exhibited an increased blood O2 capacity; however, isoelectric focusing revealed no seasonal changes in the isohemoglobin (isoHb) profile. Blood O2 affinity was significantly increased by cold acclimation; half-saturation pressures (P50's) for air-breathing turtles at 3 degrees and 22 degrees C were 6.5 and 18.8 Torr, respectively. P50's for winter animals submerged in normoxic and hypoxic water were 5.2 and 6.5 Torr, respectively. CO2 Bohr slopes (Delta logP50/Delta pH) were -0.15, -0.16, and -0.07 for AB-3 degrees C, NS-3 degrees C, and HS-3 degrees C turtles, respectively; the corresponding value for AB-22 degrees C was -0.37. The O2 equilibrium curve (O2EC) shape was similar for AB-3 degrees C and NS-3 degrees C turtles; Hill plot n coefficients ranged from 1.8 to 2.0. The O2EC shape for HS-3 degrees C turtles was anomalous, exhibiting high O2 affinity below P50 and a right-shifted segment above half-saturation. We suggest that increases in Hb-O2 affinity and O2 capacity enhance extrapulmonary O2 uptake by turtles overwintering in normoxic water. The anomalous O2EC shape and reduced CO2 Bohr effect of HS-3 degrees C turtles may also promote some aerobic metabolism in hypoxic water.  相似文献   

9.
Oxygen-binding to haemocyanin (Hc) is generally an exothermic process, with overall enthalphy of oxygenation varying from species to species. A number of crustacean Hcs showed a null or reduced enthalphy of oxygenation, among others, the anomuran Pagurus bernhardus and Paralithodes camtscaticae possess a completely temperature-independent oxygen-binding in a wide range of temperature and pH. Functional analysis performed on purified native, hexameric and dodecameric Hc forms of the anemone hermit crab Dardanus calidus allowed to calculate the enthalphy of oxygenation values that resulted equal to -36.2, -33.8 and -26.8 kJ/mol, respectively. Thus, the temperature sensitivity of oxygen binding of D. calidus Hc is in contrast with the temperature independence reported for P. bernhardus and P. camtscaticae, suggesting a high Hc functional heterogeneity within Anomura. Functional characterization also evidenced a strong oxygen affinity modulation by protons (DeltalogP(50)/DeltapH = -0.97) and lactate [DeltalogP(50)/Deltalog(lactate) = -0.38], and a significant decrease in cooperativity by physiological concentration of lactate (n(50) from 2.8 to 1.7 at pH 7.5).  相似文献   

10.
The subunit composition of Portunus trituberculatus hemocyanin polymers   总被引:1,自引:0,他引:1  
The subunit composition of isolated polymeric forms of Portunus trituberculatus hemocyanin were analysed by immunological techniques. The dodecamers contain four monomeric subunits corresponding to subunits I, II, III and IV, whereas the hexamers are devoid of subunit IV. These results suggest that subunit IV is required as a joining piece for the assembly of dodecamers.  相似文献   

11.
We have studied the stability and reassociation behaviour of native molecules of Rapana venosa hemocyanin and its two subunits, termed RvH1 and RvH2. In the presence of different concentrations of Ca(2+) and Mg(2+) ions and pH values, the subunits differ not only in their reassociation behaviour, but also in their formation of helical tubules and multidecamers. RvH1 revealed a greater stability at higher pH values compared to RvH2. Overall, the stability of reassociated RvH and its structural subunits was found to be pH-dependent. The increasing stability of native Hc and its subunits, shown by pH-induced CD transitions (acid and alkaline denaturation), can be explained with the formation of quaternary structure. The absence of a Cotton effect at temperatures 20-40 degrees C in the pH-transition curves of RvH2 indicates that this subunit is stabilized by additional "factors", e.g.: non-ionic/hydrophobic stabilization and interactions of carbohydrate moieties. A similar behaviour was observed for the T-transition curves in a wide pH interval for RvH and its structural subunits. At higher temperatures, many of the secondary structural elements are preserved especially at neutral pH, even at extreme high temperatures above 90 degrees C the protein structures resemble a "globule state".  相似文献   

12.
The hemocyanin (Hc) from Buthus sindicus, studied in the native state, demonstrated to be an aggregate of eight different types of subunits arranged in four cubic hexamers. Both, the 'top' and the 'side' views of the native molecule have been identified from the negatively stained specimens using transmission electron microscopy. Out of these, eight different polypeptide chains, the partial primary structure (68%) of a subunit Bsin1 (Mr = 72422.7 Da) was established using a combination of automated Edman degradation and mass spectrometry. A multiple sequence alignment with other closely related cheliceratan Hc subunits revealed average identities of ca. 60%. Most of the structurally important residues, i.e. copper and calcium-binding ligands, as well as the residues involved in the presumed oxygen entrance pathway, proved to be strictly conserved in Bsin1. Sequence variations have been observed around the functionally important chloride-binding site, not only for the B. sindicus subunit Bsin1, but also for the subunit Aaus-6 of the scorpion A. australis and the subunit Ecal-a from the spider Eurypelma californicum Hcs. Deviation in the primary structure related to the chloride-binding site suggest that the effect of chloride ions may vary in different hemocyanins. Furthermore, the secondary structural contents of the Hc subunit Bsin1 were determined by circular dichroism revealing ca. 33% alpha-helix, 18%, beta-sheet, 19% beta-turn, and 30% random coil composition. These values are in good agreement with the crystal structure of the closely related Hc subunit Lpol-II from horseshoe crab L. polyphemus. Electron microscopic studies of the purified Hc subunit under native conditions revealed that Bsin1 has self aggregation properties. Results of these studies are discussed.  相似文献   

13.
Six subunits (I to VI) were isolated from hemocyanin of an Asian horseshoe crab, Tachypleus gigas, by anion exchange chromatography of the dissociated hemocyanin. The subunit preparations were nearly homogeneous as judged by alkaline electrophoresis, but they still showed the presence of isoproteins in isoelectric focusing. The subunits were reassembled (in 10 mM CaCl2 at pH 7.5) and tested for restoration of the cooperativity in O2 binding. The reassembly of the subunits gave equilibrium mixtures of the monomer and hexamer with small amounts of larger molecules. Homogeneous and heterogeneous hexamers were prepared by reassembling a single kind or two kinds of subunits, followed by isolation of the hexamer fraction by gel filtration. Among the homohexamers, only the subunit V hexamer showed cooperativity in O2 binding with the Hill coefficient of 1.6. Among the heterohexamers the subunit I/V hybrid was most noteworthy, showing a Hill coefficient (1.7) higher than that of any other heterohexamer examined. It was concluded that there are specific interactions between the subunits I and V. It is suggested that their interactions are important for the cooperativity in the native hemocyanin.  相似文献   

14.
Hexameric hemocyanin from a spiny lobster, Panulirus japonicus, comprises three major subunits (Ib, II and III) and one minor subunit (Ia), as reported in the preceding paper in this journal. It has previously been shown that the O2 equilibria of Panulirus hemocyanin can be described by a concerted model extended to three affinity states [Makino, N. (1986) Eur. J. Biochem. 154, 49-55]. In this study the equilibrium binding of O2 to the reassociated subunits (Ib, II and III) was examined at various pH in the presence or absence of Ca2+ in order to test the applicability of the three-state model to the homogeneous hexamers. The hexameric structure of the reassembled subunits was less stable than that of the native protein under the conditions examined. The model could be fitted to the O2-binding isotherms of the homohexamers composed of the subunits II or III, if the molecular dissociation of the protein was taken into account. It was postulated that the monomeric hemocyanin has the same ligand affinity as that of the hexamer in the intermediate-affinity state (S). The fitting of the model to the O2 binding of the subunit I was unsuccessful mainly because of the low cooperativity of the assembled subunits.  相似文献   

15.
The functional relevance of oxygen transport by hemocyanin of the Antarctic octopod Megaleledone senoi and of the eurythermal cuttlefish Sepia officinalis was analyzed by continuous and simultaneous recordings of changes in pH and hemocyanin oxygen saturation in whole blood at various temperatures. These data were compared to literature data on other temperate and cold-water cephalopods (octopods and giant squid). In S. officinalis, the oxygen affinity of hemocyanin changed at deltaP50/degrees C = 0.12 kPa (pH 7.4) with increasing temperatures; this is similar to observations in temperate octopods. In M. senoi, thermal sensitivity was much smaller (<0.01 kPa, pH 7.2). Furthermore, M. senoi hemocyanin displayed one of the highest levels of oxygen affinity (P50 < 1 kPa, pH 7.6, 0 degrees C) found so far in cephalopods and a rather low cooperativity (n50 = 1.4 at 0 degrees C). The pH sensitivity of oxygen binding (delta log P50/delta pH) increased with increasing temperature in both the cuttlefish and the Antarctic octopod. At low PO2 (1.0 kPa) and pH (7.2), the presence of a large venous oxygen reserve (43% saturation) insensitive to pH reflects reduced pH sensitivity and high oxygen affinity in M. senoi hemocyanin at 0 degrees C. In S. officinalis, this reserve was 19% at pH 7.4, 20 degrees C, and 1.7 kPa O2, a level still higher than in squid. These findings suggest that the lower metabolic rate of octopods and cuttlefish compared to squid is reflected in less pH-dependent oxygen transport. Results of the hemocyanin analysis for the Antarctic octopod were similar to those reported for Vampyroteuthis--an extremely high oxygen affinity supporting a very low metabolic rate. In contrast to findings in cold-adapted giant squid, the minimized thermal sensitivity of oxygen transport in Antarctic octopods will reduce metabolic scope and thereby contribute to their stenothermality.  相似文献   

16.
Structural and functional diversities of the subunits of Panulirus japonicus (spiny lobster) hemocyanin were investigated. The hemocyanin mostly exists as a hexamer in the native state. It was found that the hemocyanin is composed of three major subunits (Ib, II and III) and one minor subunit (Ia), which differ in N-terminal sequence. In the dissociated state, the major subunits (Ib, II and III) showed no or very small Bohr effects. The O2 affinity of the subunit III was about three times as high as those of the other two. The subunits could be reassociated into homogeneous and heterogeneous hexamers, which exhibited the cooperativity in O2 binding. The homohexamers were similar to each other in O2 affinity and the Bohr effect, though some differences were observed in the magnitude of the cooperativity. In particular, the subunit II homohexamer exhibited a high cooperativity, which was comparable to that of the native protein. The heterohexamers showed slightly higher O2 affinities and slightly lower cooperativity, as compared with the parent homohexamers. It was concluded that there is no essential difference among the three major subunits of P. japonicus hemocyanin in the O2 binding and assembly properties.  相似文献   

17.
Limulus polyphemus hemocyanin is a 3.3 x 10(6)-Mr protein containing 48 subunits in an assemblage of eight hexamers. The molecule can be dissociated into monomers and dimers at pH 8.9 in the presence of 0.01 M EDTA. These subunits are heterogeneous and can be separated into five zones (I--V) by DEAE-Sephadex chromatography. Reassembly experiments were carried out with varied subunit mixtures, based on different combinations of the five chromatographic zones, in order to study the structural role of the diverse subunits in the eight-hexamer molecule. The reassembly products were analysed by electron microscopy and ultracentrifugation. No structural role for zone I could be found. Zone V and possibly zone II are needed to form structures larger than hexamers. Absence of zone III causes irregular aggregation of hexamers. Zone IV and perhaps zone II are needed to make eight-hexamer molecules from four-hexamer molecules. From these results we conclude that there is a high degree of subunit specificity in the inter-subunit contacts in the native Limulus hemocyanin molecule.  相似文献   

18.
Polychaete species belonging to the genus Branchipolynoe are commensal with mussels from deep-sea hydrothermal vents and cold-seeps. Possessing hemoglobins (Hbs), the species B. symmytilida, which is found in the mussel Bathymodiolus thermophilus on the East Pacific Rise, is exceptional in a family normally devoid of respiratory pigments. In a previous paper we described two major coelomic extracellular hemoglobins with unique quaternary structures. Aiming to discern respiratory adaptations to the highly variable hydrothermal environment, this paper characterizes the functional properties of these Hbs and the coelomic fluid. The two major hemoglobins (C1 and C2) exhibit spectrophotometric characteristics of both intra- and extracellular hemoglobins. However, their amino acid content is very different from other known hemoglobins and is characterized by a high proportion of alanine and glycine (up to 40% cumulated in C1). C1 and C2 differ markedly by their cysteine content (0.8% and 13% respectively). The coelomic fluid exhibits a strong buffer capacity due to the high hemoglobin content (3 mM heme). In vitro, CO2 accumulation (up to 10-12 mM CO2 for PCO2 = 7.5 Torr) occurs with limited pH changes and is only partly accounted for by carbamino-Hb formation. The two hemoglobins exhibit high oxygen-affinities (P50 0.4 Torr for C1 and 0.9 Torr for C2, at 10 degrees C, pH 8) and a normal Bohr effect (phi values ranging from -0.54 and -0.37 at 10 degrees C, to -0.24 and -0.28 at 30 degrees C, for C1 and C2, respectively). Cooperativity values range from 0.8 to 1.9 for C1 and from 0.8 to 1.7 for C2. The temperature sensitivity of O2 affinity reflect deltaH values that decrease from -30 to -60 kJ x mol(-1) with increasing pH. C2 exhibits a slight specific effect of CO2 on oxygenation properties.  相似文献   

19.
As an approach to elucidate the mechanism of the protein structure change in the cooperative ligand binding, the UV difference and CD spectra of aromatic residues in Panulirus japonicus (spiny lobster) hemocyanin were examined. The native hemocyanin showed an O2-induced narrow-banded change in the absorption spectrum around 290 nm, which was not affected by pH in the range of 7.5 to 9.5. When the native hexameric protein was stripped of divalent cations with EDTA (at pH 7.5), the magnitude of the narrow-banded difference was reduced to about half, whereas it was almost completely abolished on dissociation into subunits (stripped at pH 9.5). The magnitude of the absorption change was found to be proportional to the degree of O2 saturation in the native and stripped hemocyanins. It was inferred that the spectral difference reflects a tertiary structure change directly linked to the oxygenation, though it depends greatly on the subunit association. Panulirus hemocyanin showed negative CD bands in the region of 260 to 300 nm, the intensities of which were considerably reduced by oxygenation and also by dissociation into subunits.  相似文献   

20.
Alvinella pompejana is a tubicolous polychaete that dwells in the hottest part of the hydrothermal vent ecosystem in a highly variable mixture of vent (350 degrees C, anoxic, CO(2)- and sulfide-rich) and deep-sea (2 degrees C, mildly hypoxic) waters. This species has developed distinct-and specifically respiratory-adaptations to this challenging environment. An internal gas exchange system has recently been described, along with the report of an intracellular coelomic hemoglobin, in addition to the previously known extracellular vascular hemoglobin. This article reports the structure of coelomic hemoglobin and the functional properties of both hemoglobins in order to assess possible oxygen transfer. Coelomocytes contain a unique monomeric hemoglobin with a molecular weight of 14,810+/-1.5 Da, as determined by mass spectrometry. The functional properties of both hemoglobins are unexpectedly very similar under the same conditions of pH (6.1-8.2) and temperature (10 degrees -40 degrees C). The oxygen affinity of both proteins is relatively high (P50=0.66 Torr at 20 degrees C and pH 7), which facilitates oxygen uptake from the hypoxic environment. A strong Bohr effect (Phi ranging from -0.8 to -1.0) allows the release of oxygen to acidic tissues. Such similar properties imply a possible bidirectional transfer of oxygen between the two hemoglobins in the perioesophagal pouch, a mechanism that could moderate environmental variations of oxygen concentration and maintain brain oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号