首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study was to evaluate the influence of pontic and cantilever designs (mesial and distal) on 3-unit implant-retained prosthesis at maxillary posterior region verifying stress and strain distributions on bone tissue (cortical and trabecular bones) and stress distribution in abutments, implants and fixation screws, under axial and oblique loadings, by 3D finite element analysis. Each model was composed of a bone block presenting right first premolar to the first molar, with three or two external hexagon implants (4.0 × 10 mm), supporting a 3-unit splinted dental fixed dental prosthesis with the variations: M1 – three implants supporting splinted crowns; M2 – two implants supporting prosthesis with central pontic; M3 – two implants supporting prosthesis with mesial cantilever; M4 – two implants supporting prosthesis with distal cantilever. The applied forces were 400 N axial and 200 N oblique. The von Mises criteria was used to evaluate abutments, implants and fixation screws and maximum principal stress and microstrain criteria were used to evaluate the bone tissue. The decrease of the number of implants caused an unfavorable biomechanical behavior for all structures (M2, M3, M4). For two implant-supported prostheses, the use of the central pontic (M2) showed stress and strain distributions more favorable in the analyzed structures. The use of cantilever showed unfavorable biomechanical behavior (M3 and M4), mainly for distal cantilever (M4). The use of three implants presented lower values of stress and strain on the analyzed structures. Among two implant-supported prostheses, prostheses with cantilever showed unfavorable biomechanical behavior in the analyzed structures, especially for distal cantilever.  相似文献   

2.
The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading.  相似文献   

3.
Lower survival rates were observed for the implant placed in the anterior maxilla. The purpose of this study was to investigate the influence of different implant lengths on the stress distribution around osseointegrated implants under a static loading condition in the anterior maxilla using a three-dimensional finite element analysis. The diameter of 4.0 mm external type implants of different lengths (8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) was used in this study. The anterior maxilla was assumed to be D3 bone quality. All the material was assumed to be homogenous, isotropic and linearly elastic. The implant–bone interface was constructed using a rigid element for simulating the osseointegrated condition. Then, 176 N of static force was applied on the middle of the palatoincisal line angle of the abutment at a 120°angle to the long axis of abutment. The von Mises stress value was measured with an interval of 0.25 mm along the bone–implant interface. Incremental increase in implant length causes a gradual reduction of maximum and average von Mises stress at the labial portion within the implant. In the bone, higher stress was concentrated within cortical bone area and more distributed at the labial cortex, while cancellous bone showed relatively low stress concentration and even distribution. An increase in implant length reduced stress gradients at the cortical peri-implant region. Implant length affects the mechanisms of load transmission to the osseointegrated implant. On the basis of this study the biomechanical stress-based performance of implants placed in the anterior maxilla improves when using longer implants.  相似文献   

4.
It is always recommended to use more implants for supporting a prosthesis in the immediate loading condition than in the classical two-stage treatment procedure. By means of the finite element (FE) method, the influence of the number of implants used in immediately loaded fixed partial prosthesis (FPP) on the load distribution was investigated, considering the abutment geometry. Two 3D FE models were studied employing four implants to support a FPP in the premaxilla. One model was designed with straight abutments and the other with 20°-angled abutments. The results concerning implant displacements, stresses and strains were compared with those of two implant-supported FPPs, obtained in a previous study. A noticeable reduction in the determined biomechanical bone loading was observed with the use of more implants in supporting an immediately loaded prosthesis. This study confirms that the use of additional numbers of implants in an immediately loaded prosthesis is highly recommended.  相似文献   

5.
The aim of this study was to gain insight into the behaviour of the stresses and strains at the bone–implant interface of an implant-supported fixed partial prosthesis (FPP) in the premaxilla under immediate loading and osseointegrated conditions. Finite element models of a four-unit FPP were generated. An extreme condition was simulated, using only two immediately loaded implants in order to derive recommendations for possible clinical application. Straight and 20°-angled abutments and bonded or sliding contact between the bridge and abutment were simulated. In addition, two models were generated with two completely osseointegrated implants. A 150 N load to the prosthesis at a 45° angle to the long axis of each implant was applied. Minor differences were observed in implant displacements, stress and strain distributions of the two abutment designs. However, bone loading exceeded the physiological limits, including a risk of bone atrophy. A considerable decrease in implant displacements and bone loading was observed in the osseointegrated cases. An FPP supported by only two implants cannot be recommended for immediate loading.  相似文献   

6.
The aim of study was to evaluate the stress distribution in implant-supported prostheses and peri-implant bone using internal hexagon (IH) implants in the premaxillary area, varying surgical techniques (conventional, bicortical and bicortical in association with nasal floor elevation), and loading directions (0°, 30° and 60°) by three-dimensional (3D) finite element analysis. Three models were designed with Invesalius, Rhinoceros 3D and Solidworks software. Each model contained a bone block of the premaxillary area including an implant (IH, Ø4 × 10 mm) supporting a metal-ceramic crown. 178 N was applied in different inclinations (0°, 30°, 60°). The results were analyzed by von Mises, maximum principal stress, microstrain and displacement maps including ANOVA statistical test for some situations. Von Mises maps of implant, screws and abutment showed increase of stress concentration as increased loading inclination. Bicortical techniques showed reduction in implant apical area and in the head of fixation screws. Bicortical techniques showed slight increase stress in cortical bone in the maximum principal stress and microstrain maps under 60° loading. No differences in bone tissue regarding surgical techniques were observed. As conclusion, non-axial loads increased stress concentration in all maps. Bicortical techniques showed lower stress for implant and screw; however, there was slightly higher stress on cortical bone only under loads of higher inclinations (60°).  相似文献   

7.
Allogen bones from tissue bank are often used in dentistry although the data analyzing the long-term success in mandible are scarce. This study evaluated by computed tomography scans (CTS) the bone resorption around the implants installed on fresh frozen bone (FFB) previously grafted, after 4 years of occlusal rehabilitation. Six subjects were grafted with blocks in posterior mandible using FFB. After 6 months, 27 implants were placed and after further 4 months the prostheses were delivered. Following 4 years of the final rehabilitation procedures, another CTS was done in order to measure the resorption in periimplant bone crest at the proximal implant surfaces. It was observed a 100 % survival rate of the implants after 4 years of the fixture installation. The marginal bone resorption after 48 months was 2.82 ± 1.63 mm and no statistical significant difference was observed along the region where the implants were fixed when compared with the interimplantar space. In addition there was no significant correlation regarding the length of the implant used and the amount of marginal bone resorption. The conclusion is that grafted areas with FFB are suitable to implant installation in the posterior mandible.  相似文献   

8.
It is always recommended to use more implants for supporting a prosthesis in the immediate loading condition than in the classical two-stage treatment procedure. By means of the finite element (FE) method, the influence of the number of implants used in immediately loaded fixed partial prosthesis (FPP) on the load distribution was investigated, considering the abutment geometry. Two 3D FE models were studied employing four implants to support a FPP in the premaxilla. One model was designed with straight abutments and the other with 20°-angled abutments. The results concerning implant displacements, stresses and strains were compared with those of two implant-supported FPPs, obtained in a previous study. A noticeable reduction in the determined biomechanical bone loading was observed with the use of more implants in supporting an immediately loaded prosthesis. This study confirms that the use of additional numbers of implants in an immediately loaded prosthesis is highly recommended.  相似文献   

9.
目的:比较上颌窦挤压内提升(OSFE)植骨与不植骨种植修复的临床效果。方法:选择上颌后牙区种植修复的35例患者,其剩余牙槽嵴高度(RBH)为4~8 mm,共植入43颗种植体。A组16例患者为植骨组,20个种植位点,牙槽骨可用骨高度平均(5.87±1.19)mm,植入人工骨粉后植入种植体;B组19例患者为不植骨组,23个种植位点,缺牙区牙槽骨可用骨高度平均(5.67±1.10)mm,上颌窦提升后直接植入种植体。6个月后行二期手术完成修复。采用临床检查、X线检查及视觉模拟评分法(visual analogue scale,VAS)进行效果评价。结果:两组病例的牙槽嵴高度差异比较无统计学意义。在平均约36.7个月的随访期内,A组种植体的存留率为100%(20/20),B组中有1枚种植体因咬合力过大及口腔卫生较差脱落,种植体的存留率为95.6%(22/23),两组病例的存留率比较无统计学差异。两组患者的VAS值比较亦相当。所有种植体骨结合良好,种植体周围软组织无炎症,种植义齿咀嚼功能良好。结论:在严格控制适应症、准确掌握种植技巧的前提下,RBH在4~8 mm之间的病例无需额外植入骨代替材料即可取得理想的修复效果,简化了手术的操作,减少了手术的风险和创伤,节省了手术的时间和费用,易被患者接受。  相似文献   

10.
Factors related to micromovements at bone-implant interface have been studied because they are considered adverse to osseointegration. Simplifications are commonly observed in these FEA evaluations. The aim of this study was to clarify the influence of FEA parameters (boundary conditions and bone properties) on the stress distribution in peri-implant bone tissue when micromovements are simulated in implants with different geometries. Three-dimensional models of an anterior section of the jaw with cylindrical or conical titanium implants (4.1 mm in width and 11 mm in length) were created. Micromovement (50, 150, or 250 μm) was applied to the implant. The FEA parameters studied were linear vs. non-linear analyses, isotropic vs. orthogonal anisotropic bone, friction coefficient (0.3) vs. frictionless bone-implant contact. Data from von Mises, shear, maximum, and minimum principal stresses in the peri-implant bone tissue were compared. Linear analyses presented a relevant increase of the stress values, regardless of the bone properties. Frictionless contact reduced the stress values in non-linear analysis. Isotropic bone presented lower stress than orthogonal anisotropic. Conical implants behave better, in regard to compressive stresses (minimum principal), than cylindrical ones, except for nonlinear analyses when micromovement of 150 and 250 μm were simulated. The stress values raised as the micromovement amplitude increased. Non-linear analysis, presence of frictional contact and orthogonal anisotropic bone, evaluated through maximum and minimum principal stress should be used as FEA parameters for implant-micromovement studies.  相似文献   

11.
The fibula osteoseptocutaneous flap is a good option for reconstruction of three-dimensional composite maxillary defects. This flap provides both bone and soft-tissue reconstruction and allows osseointegrated dental implantation, either simultaneously or in a second-stage procedure. Simultaneous placement of osseointegrated dental implants reduces operative sessions and allows faster oral rehabilitation for properly selected patients. The defects may result from trauma or resection of benign tumors or low-grade malignancies. Between August of 1999 and July of 2001, three patients underwent maxillary reconstruction with the fibula osteoseptocutaneous flap and simultaneous osseointegrated dental implants. The cause of the defect was trauma in two cases and resection of an adenoid cystic carcinoma in the other. The mean length of the fibula used for bony reconstruction was 4.7 cm. One osteotomy was performed in one case and no osteotomy was necessary in the other two. Skin islands of 8 x 2.5 cm and 16 x 3.5 cm were used for two patients. For the other patient, a double skin island was used for both nasal (6 x 4 cm) and oral (6 x 5 cm) reconstructions. Two osseointegrated implants were inserted into the fibular bone for each patient. Six months after the first-stage procedure, palatal rotation flaps or mucosa grafts were used to cover the exposed implant necks and prepare the implants for prostheses. One month after the second-stage procedure, prostheses were placed. An implant-supported prosthesis was used for one patient and implant/tissue-supported prostheses were used for the others. At a mean follow-up time of 30 months (range, 16 to 38 months), all patients were able to use the dental prosthesis for chewing (beginning 6 weeks after the final procedure) and all patients were satisfied with the cosmetic results.  相似文献   

12.
Algorithmic models have been proposed to explain adaptive behavior of bone to loading; however, these models have not been applied to explain the biomechanics of short dental implants. Purpose of present study was to simulate bone remodeling around single implants of different lengths using mechanoregulatory tissue differentiation model derived from the Stanford theory, using finite elements analysis (FEA) and to validate the theoretical prediction with the clinical findings of crestal bone loss. Loading cycles were applied on 7-, 10-, or 13-mm-long dental implants to simulate daily mastication and bone remodeling was assessed by changes in the strain energy density of bone after a 3, 6, and 12 months of function. Moreover, clinical findings of marginal bone loss in 45 patients rehabilitated with same implant designs used in the simulation (n = 15) were computed to validate the theoretical results. FEA analysis showed that although the bone density values reduced over time in the cortical bone for all groups, bone remodeling was independent of implant length. Clinical data showed a similar pattern of bone resorption compared with the data generated from mathematical analyses, independent of implant length. The results of this study showed that the mechanoregulatory tissue model could be employed in monitoring the morphological changes in bone that is subjected to biomechanical loads. In addition, the implant length did not influence the bone remodeling around single dental implants during the first year of loading.  相似文献   

13.
The effect of implants’ number on overdenture stability and stress distribution in edentulous mandible, implants and overdenture was numerically investigated for implant-supported overdentures. Three models were constructed. Overdentures were connected to implants by means of ball head abutments and rubber ring. In model 1, the overdenture was retained by two conventional implants; in model 2, by four conventional implants; and in model 3, by five mini implants. The overdenture was subjected to a symmetrical load at an angle of 20 degrees to the overdenture at the canine regions and vertically at the first molars. Four different loading conditions with two total forces (120, 300 N) were considered for the numerical analysis. The overdenture displacement was about 2.2 times higher when five mini implants were used rather than four conventional implants. The lowest stress in bone bed was observed with four conventional implants. Stresses in bone were reduced by 61% in model 2 and by 6% in model 3 in comparison to model 1. The highest stress was observed with five mini implants. Stresses in implants were reduced by 76% in model 2 and 89% increased in model 3 compared to model 1. The highest implant displacement was observed with five mini implants. Implant displacements were reduced by 29% in model 2, and increased by 273% in model 3 compared to model 1. Conventional implants proved better stability for overdenture than mini implants. Regardless the type and number of implants, the stress within the bone and implants are below the critical limits.  相似文献   

14.
In implantology, when financial or biological feasibility limitations appear, it is necessary to use prostheses with geometries that deviate from the conventional, with a pontic in the absence of an intermediate implant. The aim of this study was analyze and understand the general differences in the stresses generated in implants, components and infrastructures according to the configuration of the prosthesis over three or two implants. Thus, this paper analyzes the von Mises equivalent stresses (VMES) of ductile materials on their external surfaces. The experimental groups: Regular Splinted Conventional Group (RCG), which had conventional infrastructures on 3 regular-length Morse taper implants (4x11?mm); Regular Splinted Pontic Group (RPG), which had infrastructures with intermediate pontics on 2 regular-length Morse taper implants (4x11?mm). The simulations of the groups were created with Ansys Workbench 10.0 software. The results revealed that the RPG presented greater areas of possible fragility due to higher stress concentrations, for example, in the cervical area of the union between the implant and component the top platform of the abutment, as well as greater coverage of the stress by the cervical implant threads. The RPG infrastructure was also more affected by stresses in the connection areas between the prostheses and on the occlusal surface. There is an advantage to using prostheses supported by a greater number of implants (RCG) because this decreases the stress in the analyzed structures and consequently improves stress dissipation to the supporting bone, which would preserve the system.  相似文献   

15.
目的:制作氧化锆基台并将其与钛基台的抗折强度相比较,从而探讨其临床应用的可行性。方法:选用纳米氧化锆粉,采用冷等静压成型和二次烧结工艺制作0sstem USⅡ系统氧化锆基台;选取氧化锆基台和成品钛基台(OSSTEM公司,韩国)各10枚,分别与0sstem USⅡ种植体装配,然后固定于不锈钢夹具中置于万能试验机,将万能试验机压头与种植体长轴成90°角施加压力,记录基台损坏时的加载力值,比较分析两组试件的强度差异。结果:氧化锆基台和钛基台的平均抗折强度分别为(540.5±84.6)N和(753.9±160.8)N,差别有统计学意义(P〈0.05)。氧化锆基台组10枚基台全部颈部折裂;钛基台组2枚种植体损坏,6枚中央固位螺钉损坏,2枚基台颈部折裂。结论:本研究制作的0sstem USⅡ系统的氧化锆基台的抗折强度虽然低于钛基台,但尚能满足临床应用要求。  相似文献   

16.
Endosteal implants facilitate obturator prosthesis fixation in tumor patients after maxillectomy. Previous clinical studies have shown, however, that the survival of implants placed into available bone after maxillectomy is generally poor. Nevertheless, implants positioned optimally in residual zygomatic bone provide superior stability from a biomechanical point of view. In a pilot study, the authors assessed the precision of VISIT, a computer-aided surgical navigation system dedicated to the placement of endosteal implants in the maxillofacial area. Five cadaver specimens underwent hemimaxillectomy. The cadaver head was matched to a preoperative high-resolution computed tomograph by using implanted surgical microscrews as fiducial markers. The position of a surgical drill relative to the cadaver head was determined with an optical tracking system. Implants were placed into the zygomatic arch, where maximum bone volume was available. The results were assessed using tests for localization accuracy and postoperative computed tomographic scans of the cadaver specimens. The localization accuracy of landmarks on the bony skull was 0.6 +/- 0.3 mm (average +/- SD), as determined with a 5-df pointer probe; the localization accuracy of the tip of the implant burr was 1.7 +/- 0.4 mm. The accuracy of the implant position compared with the planned position was 1.3 +/- 0.8 mm for the external perforation of the zygoma and 1.7 +/-1.3 mm for the internal perforation. Eight of 10 implants were inserted with maximal contact to surrounding bone, and two implants were located unfavorably. Reliable placement of implants in this region is difficult to achieve. The technique described in this article may be very helpful in the management of patients after maxillary resection with poor support for obturator prostheses.  相似文献   

17.
Few studies are performed to evaluate the influence of connection type on the stress distribution of distal extension mandibular removable partial dentures (RPDs) supported by both implants and natural teeth. In this study, five three-dimensional finite element models were prepared to simulate mandibular bilateral partially edentulous arches. Four were RPDs supported by both implants and natural teeth, and the other one was RPDs supported only by natural teeth. The maximum equivalent (EQV) stress values of bone around implants, the abutments, and the mucosa displacements of the related supporting structures were measured. It was found that a non-rigid telescopic coping was more favorable to protect the implant than a rigid telescopic coping. Compared with other connection types, the easy resilient attachment (ERA) system seemed to be effective to associate implant without complications. However, the results obtained in the present study should be cautiously interpreted in the clinic.  相似文献   

18.
The surface modifications in teeth increase the retentive strength of cemented castings by providing micro as well as macro retentive ridge and groove patterns. Restoring the dental implants with cement-retained prosthesis is well known. Therefore, it is of interest to compare retentive property of implant abutments with and without circumferential grooves. Hence, 20 straight shoulder type titanium abutments were with abutment screws as well as prefabricated plastic copings and corresponding 12 mm-long stainless steel laboratory implant analogs were used. The abutments were divided into two subgroups of 10 abutments each: without grooves and with grooves. After thermocycling and storing the cemented abutments in water at 37°C water for 6 days they were assembled in the Universal testing machine and subjected to a pullout test (retention) at a crosshead speed of 5.0mm/min to record forces in Newton. Data suggest that the addition of grooves increased the retention. The mean retentive forces of standard machined abutments (plain) cemented with Resin modified GIC showed 339.34 N. Retention increased by 667.39N after addition of circumferential grooves. The surface modification of an implant abutment by means of circumferential grooves is an effective method of improving the retention of cast crowns cemented with resin modified GIC especially in short abutments.  相似文献   

19.
The objective of the present study is to evaluate bone loss at implant abutments coated with a soda-lime glass containing silver nanoparticles subjected to experimental peri-implantitis. Five beagle dogs were used in the experiments, 3 implants were installed in each quadrant of the mandibles. Glass/n-Ag coted abutments were connected to implant platform. Cotton floss ligatures were placed in a submarginal position around the abutment necks and the animals were subject to a diet which allowed plaque accumulation, and after 15 weeks the dogs were sacrificed. Radiographs of all implant sites were obtained at the beginning and at the end of the experimentally induced peri-implantitis. The radiographic examination indicated that significant amounts of additional bone loss occurred in implants without biocide coating, considering both absolute and relative values of bone loss. Percentages of additional bone loss observed in implants dressed with a biocide coated abutment were about 3 times lower (p<0.006 distal aspect; and p<0.031 at mesial aspect) than the control ones. Within the limits of the present study it seems promising the use of soda-lime glass/nAg coatings on abutments to prevent peri-implant diseases.  相似文献   

20.
Although immediate implantation has not been previously recommended in infected sites, it is now becoming a procedure of choice in modern implant dentistry. We report a case of a 65-year-old male patient, who required multiple tooth extractions in the lower jaw and fabrication of a new overdenture in the lower jaw and a complete denture in the upper jaw. Immediate implantation in infected tooth sockets followed extraction. Two NobelReplace Tapered implants (Nobel BioCare, Zürich, Switzerland), one 13 mm long and 4.3 mm wide and the other 13 mm long and 5.0 mm wide, were placed in the position 33 and 43. The site was sutured and a temporary denture was fabricated by adjusting the old denture. After a period of three months the implant site was reopened and healing abutments were placed. Impressions were made using the Impregum Penta Soft (3M ESPE, St. Paul, Minn, USA) polyether material. Ball Abutment Titanium" was used as a patrix attachment and a matrix was inserted into the denture. Clinical examination and x-ray analysis after six months showed no significant changes of the implants. Bone resorption was within standard values. Although it is still a controversial subject, immediate implantation in infected sites can be a safe and predictable procedure if surgical protocols are followed. However, further research is needed to draw firm conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号