首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forefoot strike becomes popular among runners because it facilitates better impact attenuation. However, forefoot strike may overload the plantar fascia and impose risk of plantar fasciitis. This study aimed to examine and compare the foot arch deformation and plantar fascia tension between different foot strike techniques in running using a computational modelling approach. A three-dimensional finite element foot model was reconstructed from the MRI of a healthy runner. The foot model included twenty bones, bulk soft tissue, ligaments, tendons, and plantar fascia. The time-series data of segmental kinematics, foot muscle force, and ankle joint reaction force were derived from a musculoskeletal model of the same participant based on the motion capture analysis and input as the boundary conditions for the finite element analysis. Rearfoot strike and forefoot strike running were simulated using a dynamic explicit solver. The results showed that, compared to rearfoot strike, forefoot strike reduced the foot arch height by 9.12% and increased the medial longitudinal arch angle by 2.06%. Forefoot strike also increased the plantar connective tissues stress by 18.28–200.11% and increased the plantar fascia tensile force by 18.71–109.10%. Although it is currently difficult to estimate the threshold value of stress or force that results in injury, forefoot strike runners appeared to be more vulnerable to plantar fasciitis.  相似文献   

2.
Elevated impact loading can be detrimental to runners as it has been linked to the increased risk of tibial stress fracture and plantar fasciitis. The objective of this study was to investigate the combined effects of foot strike pattern, step rate, and anterior trunk lean gait modifications on impact loading in runners. Nineteen healthy runners performed 12 separate gait modification trials involving: three foot strike patterns (rearfoot, midfoot, and forefoot strike), two step rates (natural and 10% increased), and two anterior trunk lean postures (natural and 10-degree increased flexion). Overall, forefoot strike combined with increased step rate led to the lowest impact loading rates, and rearfoot strike combined with anterior trunk lean led to the highest impact loading rates. In addition, there were interaction effects between foot strike pattern and step rate on awkwardness and effort, such that it was both more natural and easier to transition to a combined gait modification involving forefoot strike and increased step rate than to an isolated gait modification involving either forefoot strike or increased step rate. These findings could help to inform gait modifications for runners to reduce impact loading and associated injury risks.  相似文献   

3.
Forefoot strike is increasingly being adopted by runners because it can better attenuate impact than rearfoot strike. However, forefoot strike may overload the plantar fascia and alter the plantar fascia elasticity. This study aimed to use ultrasound elastography to investigate and compare shear wave elasticity of the plantar fascia between rearfoot strikers and forefoot strikers. A total of 35 participants (21 rearfoot strikers and 14 forefoot strikers), who were free of lower limb injuries and diseases, were recruited from a local running club. Individual foot strike patterns were identified through the measured plantar pressure during treadmill running. The B-Mode ultrasound images and shear wave elastographic images of the plantar fascia were collected from each runner. Two independent investigators reviewed the images and examined the plantar fascia qualitatively and quantitatively. The results demonstrated an overall good agreement between the investigators in the image review outcomes (ICC:0.96–0.98, κ: 0.89). There were no significant differences in the fascial thickness (p = 0.50) and hypoechogenicity on the gray-scale images (p = 0.54) between the two groups. Shear wave elastography showed that forefoot strikers exhibited reduced plantar fascia elasticity compared to rearfoot strikers (p = 0.01, Cohen’s d = 0.91). A less elastic fascial tissue was more easily strained under loading. Tissue overstrain is frequently related to the incidence of plantar fasciitis. While further study is needed for firm conclusions, runners using forefoot strike were encouraged to enhance their foot strength for better protection of the plantar fascia.  相似文献   

4.
Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures.  相似文献   

5.
As joint coupling variability has been associated with running-related lower extremity injury, the purpose of this study was to identify how variability within the foot may be different between forefoot (FFS) and rearfoot strike (RFS) runners. Identifying typical variability in uninjured runners may contribute to understanding of ideal coordination associated with running foot strike patterns.Fifteen FFS and 15 RFS runners performed a maximal-effort 5 km treadmill run. A 7-segment foot model identified 6 functional articulations (rearfoot, medial and lateral midfoot and forefoot, and 1st metatarsophalangeal) for analysis. Beginning and end of the run motion capture data were analyzed. Vector coding was used to calculate 6 joint couples. Standard deviations of the coupling angles were used to identify variability within subphases of stance (loading, mid-stance, terminal, and pre-swing). Mixed between-within subjects ANOVAs compared differences between the foot strikes, pre and post run.Increased variability was identified within medial foot coupling for FFS and within lateral foot coupling for RFS during loading and mid-stance. The exhaustive run increased variability during mid-stance for both groups.Interpretation. Joint coupling variability profiles for FFS and RFS runners suggest different foot regions have varying coordination needs which should be considered when comparing the strike patterns.  相似文献   

6.
The pressure distribution on the plantar surface of the foot may provide insights into the stresses within the subsurface tissues of patients with diabetes mellitus and peripheral neuropathy (PN) who are at risk for skin breakdown. The purposes of this study were to (1) estimate the stress distribution in the subsurface soft tissue from a measured surface pressure distribution and determine any differences between values in the forefoot and rearfoot, and (2) determine the relationship between maximum shear stress (MSS) (magnitude and depth) and characteristics of the pressure distribution. The measured in-shoe pressure distributions during walking characterized by the peak plantar pressure and maximum pressure gradient on the plantar surface of the feet for 20 subjects with diabetes, PN and history of a mid foot or forefoot plantar ulcer were analyzed. The effects of peak pressure and maximum pressure gradient at the peak pressure location on the stress components in the subsurface soft tissue were studied using a potential function method to estimate the subsurface tissue stress. The calculated MSSs are larger in magnitude and located closer to the surface in the forefoot, where most skin breakdown occurs, compared to the rearfoot. In addition, the MSS (magnitude and depth) is highly correlated with the pressure gradient (r=-0.77 & 0.61) and the peak pressure (r=-0.61 & 0.91). The peak pressure and the maximum pressure gradient obtained from the surface pressure distribution appear to be important variables to identify where MSSs are located in the subsurface tissues on the plantar foot that may lead to skin break down.  相似文献   

7.
Clinically, different foot arch heights are associated with different tissue injuries to the foot. To investigate the possible factors contributing to the difference in foot arch heights, previous studies have mostly measured foot pressure in either low-arched or high-arched feet. However, little information exists on stress variation inside the foot with different arch heights. Therefore, this study aimed to implement the finite element (FE) method to analyse the influence of different foot arches. This study established a 3D foot FE model using software ANSYS 11.0. After validating the FE model, this study created low-arched, high-arched and normal-arched foot FE models. The FE analysis found that both the stress and strain on the plantar fascia and metatarsal were higher in the high-arched foot, whereas the stress and strain on the calcaneous, navicular and cuboid were higher in low-arched foot. Additionally, forefoot pressure was increased with an increase in arch height.  相似文献   

8.
Clinically, different foot arch heights are associated with different tissue injuries to the foot. To investigate the possible factors contributing to the difference in foot arch heights, previous studies have mostly measured foot pressure in either low-arched or high-arched feet. However, little information exists on stress variation inside the foot with different arch heights. Therefore, this study aimed to implement the finite element (FE) method to analyse the influence of different foot arches. This study established a 3D foot FE model using software ANSYS 11.0. After validating the FE model, this study created low-arched, high-arched and normal-arched foot FE models. The FE analysis found that both the stress and strain on the plantar fascia and metatarsal were higher in the high-arched foot, whereas the stress and strain on the calcaneous, navicular and cuboid were higher in low-arched foot. Additionally, forefoot pressure was increased with an increase in arch height.  相似文献   

9.
The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot. The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner. Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations of 8.81° at the ankle, and a decreased metatarsophalangeal joint extension of 4.65°. The resulting peak pressure reductions at individual MTHs, however, may be site-specific and possibly dependent on foot structure, such as intrinsic alignment of the metatarsals. The relationships between muscular control, internal joint movements, and plantar load distributions are envisaged to have important clinical implications on tendo-Achilles lengthening procedures, and to provide surgeons with an understanding of the underlying mechanism for relieving forefoot pressure in diabetic patients suffering from ankle equinus contracture.  相似文献   

10.
In contrast to western countries, foot complaints are rare in Africa. This is remarkable, as many African adults walk many hours each day, often barefoot or with worn-out shoes. The reason why Africans can withstand such loading without developing foot complaints might be related to the way the foot is loaded. Therefore, static foot geometry and dynamic plantar pressure distribution of 77 adults from Malawi were compared to 77 adults from the Netherlands. None of the subjects had a history of foot complaints. The plantar pressure pattern as well as the Arch Index (AI) and the trajectory of the center of pressure during the stance phase were calculated and compared between both groups. Standardized pictures were taken from the feet to assess the height of the Medial Longitudinal Arch (MLA). We found that Malawian adults: (1) loaded the midfoot for a longer and the forefoot for a shorter period during roll off, (2) had significantly lower plantar pressures under the heel and a part of the forefoot, and (3) had a larger AI and a lower MLA compared to the Dutch. These findings demonstrate that differences in static foot geometry, foot loading, and roll off technique exist between the two groups. The advantage of the foot loading pattern as shown by the Malawian group is that the plantar pressure is distributed more equally over the foot. This might prevent foot complaints.  相似文献   

11.
A method is proposed to facilitate the quantification and interpretation of inter-joint/-segment coordination. This technique is illustrated using rearfoot-forefoot kinematic data. We expand existing vector coding techniques and introduce a set of operational terms through which the coordinative patterns between the rearfoot segment and the forefoot segment are summarized: in-phase, anti-phase, rearfoot phase and forefoot phase. The literature on foot mechanics has characterized the stable foot at pushoff by a decreasing medial longitudinal arch angle in the sagittal plane, which is accompanied by forefoot pronation and concurrent rearfoot supination-in other words, anti-phase motion. Nine skin markers were placed on the rearfoot and forefoot segments according to a multi-segment foot model. Three healthy subjects performed standing calibration and walking trials (1.35ms(-1)), while a three-dimensional motion capture system acquired their kinematics. Rearfoot-forefoot joint angles were derived and the arch angle was inferred from the sagittal plane. Coupling angles of rearfoot and forefoot segments were derived and categorized into one of the four coordination patterns. Arch kinematics were consistent with the literature; in stance, the arch angle reached peak dorsiflexion, and then decreased rapidly. However, anti-phase coordination was not the predominant pattern during mid- or late stance. These preliminary data suggest that the coordinative interactions between the rearfoot and the forefoot are more complicated than previously described. The technique offers a new perspective on coordination and may provide insight into deformations of underlying tissues, such as the plantar fascia.  相似文献   

12.
Identifying foot strike patterns in running is an important issue for sport clinicians, coaches and footwear industrials. Current methods allow the monitoring of either many steps in laboratory conditions or only a few steps in the field. Because measuring running biomechanics during actual practice is critical, our purpose is to validate a method aiming at identifying foot strike patterns during continuous field measurements. Based on heel and metatarsal accelerations, this method requires two uniaxial accelerometers. The time between heel and metatarsal acceleration peaks (THM) was compared to the foot strike angle in the sagittal plane (αfoot) obtained by 2D video analysis for various conditions of speed, slope, footwear, foot strike and state of fatigue. Acceleration and kinematic measurements were performed at 1000 Hz and 120 Hz, respectively, during 2-min treadmill running bouts. Significant correlations were observed between THM and αfoot for 14 out of 15 conditions. The overall correlation coefficient was r=0.916 (P<0.0001, n=288). The THM method is thus highly reliable for a wide range of speeds and slopes, and for all types of foot strike except for extreme forefoot strike during which the heel rarely or never strikes the ground, and for different footwears and states of fatigue. We proposed a classification based on THM: FFS<−5.49 ms<MFS<15.2 ms<RFS. With only a few precautions being necessary to ensure appropriate use of this method, it is reliable for distinguishing rearfoot and non-rearfoot strikers in situ.  相似文献   

13.

Background

The aim of this study was to identify groups of subjects with similar patterns of forefoot loading and verify if specific groups of patients with diabetes could be isolated from non-diabetics.

Methodology/Principal Findings

Ninety-seven patients with diabetes and 33 control participants between 45 and 70 years were prospectively recruited in two Belgian Diabetic Foot Clinics. Barefoot plantar pressure measurements were recorded and subsequently analysed using a semi-automatic total mapping technique. Kmeans cluster analysis was applied on relative regional impulses of six forefoot segments in order to pursue a classification for the control group separately, the diabetic group separately and both groups together. Cluster analysis led to identification of three distinct groups when considering only the control group. For the diabetic group, and the computation considering both groups together, four distinct groups were isolated. Compared to the cluster analysis of the control group an additional forefoot loading pattern was identified. This group comprised diabetic feet only. The relevance of the reported clusters was supported by ANOVA statistics indicating significant differences between different regions of interest and different clusters.

Conclusion/s Significance

There seems to emerge a new era in diabetic foot medicine which embraces the classification of diabetic patients according to their biomechanical profile. Classification of the plantar pressure distribution has the potential to provide a means to determine mechanical interventions for the prevention and/or treatment of the diabetic foot.  相似文献   

14.
ObjectiveElevated dynamic plantar foot pressures significantly increase the risk of foot ulceration in diabetes mellitus. The aim was to determine which factors predict plantar pressures in a population of diabetic patients who are at high-risk of foot ulceration.MethodsPatients with diabetes, peripheral neuropathy and a history of ulceration were eligible for inclusion in this cross sectional study. Demographic data, foot structure and function, and disease-related factors were recorded and used as potential predictor variables in the analyses. Barefoot peak pressures during walking were calculated for the heel, midfoot, forefoot, lesser toes, and hallux regions. Potential predictors were investigated using multivariate linear regression analyses. 167 participants with mean age of 63 years contributed 329 feet to the analyses.ResultsThe regression models were able to predict between 6% (heel) and 41% (midfoot) of the variation in peak plantar pressures. The largest contributing factor in the heel model was glycosylated haemoglobin concentration, in the midfoot Charcot deformity, in the forefoot prominent metatarsal heads, in the lesser toes hammer toe deformity and in the hallux previous ulceration. Variables with local effects (e.g. foot deformity) were stronger predictors of plantar pressure than global features (e.g. body mass, age, gender, or diabetes duration).ConclusionThe presence of local deformity was the largest contributing factor to barefoot dynamic plantar pressure in high-risk diabetic patients and should therefore be adequately managed to reduce plantar pressure and ulcer risk. However, a significant amount of variance is unexplained by the models, which advocates the quantitative measurement of plantar pressures in the clinical risk assessment of the patient.  相似文献   

15.
The aim of the present study was to investigate the influence of reduced plantar sensation on pressure distribution patterns during gait of 40 healthy subjects (25.3+/-3.3 yr, 70.8+/-10.6 kg and 176.5+/-7.8 cm) with no history of sensory disorders. Plantar sensation in the subjects was reduced by using an ice immersion approach, and reduced sensitivity was tested with Semmes-Weinstein monofilaments. All subjects performed six trials of barefoot walking over a pressure distribution platform under normal as well as iced conditions. Plantar cutaneous sensation was significantly reduced after the cooling procedure (p<0.0001). Pressure distribution analysis showed substantially modified plantar pressure distribution patterns during the roll-over process (ROP) under iced conditions. Analysis of peak pressures revealed significant reductions under the toes and under the heel (p<0.001). The contact time and the relative impulse for the whole foot did not change significantly between the two conditions. For the different areas, a significant load shift from the heel and toes towards the central and lateral forefoot and the lateral midfoot was observed. The results indicate the strong influence of reduced afferent information of the sole of the foot on the ROP in walking.  相似文献   

16.
Information on the internal stresses/strains in the human foot and the pressure distribution at the plantar support interface under loading is useful in enhancing knowledge on the biomechanics of the ankle-foot complex. While techniques for plantar pressure measurements are well established, direct measurement of the internal stresses/strains is difficult. A three-dimensional (3D) finite element model of the human foot and ankle was developed using the actual geometry of the foot skeleton and soft tissues, which were obtained from 3D reconstruction of MR images. Except the phalanges that were fused, the interaction among the metatarsals, cuneiforms, cuboid, navicular, talus, calcaneus, tibia and fibula were defined as contact surfaces, which allow relative articulating movement. The plantar fascia and 72 major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The encapsulated soft tissue was defined as hyperelastic, while the bony and ligamentous structures were assumed to be linearly elastic. The effects of soft tissue stiffening on the stress distribution of the plantar surface and bony structures during balanced standing were investigated. Increases of soft tissue stiffness from 2 and up to 5 times the normal values were used to approximate the pathologically stiffened tissue behaviour with increasing stages of diabetic neuropathy. The results showed that a five-fold increase in soft tissue stiffness led to about 35% and 33% increase in the peak plantar pressure at the forefoot and rearfoot regions, respectively. This corresponded to about 47% decrease in the total contact area between the plantar foot and the horizontal support surface. Peak bone stress was found at the third metatarsal in all calculated cases with a minimal increase of about 7% with soft tissue stiffening.  相似文献   

17.
Based on the hypothesis that diabetic foot lesions have a mechanical etiology, extensive efforts have sought to establish a relationship between ulcer occurrence and plantar pressure distribution. However, these factors are still not fully understood. The purpose of this study was to simultaneously record shear and pressure distributions in the heel and forefoot and to answer whether: (i) peak pressure and peak shear for anterior-posterior (AP) and medio-lateral (ML) occur at different locations, and if (ii) peak pressure is always centrally located between sites of maximum AP and ML shear stresses. A custom built system was used to collect shear and pressure data simultaneously on 11 subjects using the 2-step method. The peak pressure was found to be 362 kPa ± 106 in the heel and 527 kPa ± 123 in the forefoot. In addition, the average peak shear values were higher in the forefoot than in the heel. The greatest shear on the plantar surface of the forefoot occurred in the anterior direction (mean and std. dev.: 37.7 ± 7.6 kPa), whereas for the heel, peak shear the foot was in the posterior direction (21.2 ± 5 kPa). The results of this study suggest that the interactions of the shear forces caused greater "spreading" in the forefoot and greater tissue "dragging" in the heel. The results also showed that peak shear stresses do not occur at the same site or time as peak pressure. This may be an important factor in locating where skin breakdown occurs in patients at high-risk for ulceration.  相似文献   

18.
The purposes of this study were to determine the effects of tendon Achilles lengthening (TAL) on ambulatory plantar pressures and ankle range of motion, moment, and power, and to determine whether changes in forefoot pressure after treatment of a neuropathic ulcer are related to changes in ankle dorsiflexion range of motion (DFROM) or plantar flexor (PF) power during gait. Pressure and gait tests were performed before treatment, and at 3 weeks and 8 months after treatment in two randomly assigned groups of subjects with diabetes, equinus deformity, and a neuropathic forefoot ulcer treated with TAL and total contact casting (TAL group, n=14), or total contact casting alone (TCC group, n=14). The TAL group had an initial decrease in forefoot peak pressure (PP) (27%), forefoot pressure-time integral (PTI) (42%), PF moment (53%), and PF power (65%), along with an initial increase in rear foot PP (34%), rear foot PTI (48%), and DFROM (74%). Post-surgical changes in rear foot pressure and DFROM were maintained up to 8 months after treatment with TAL, whereas forefoot pressure and PF moment and power increased significantly. Changes in forefoot pressure after treatment in either group were correlated with changes in PF power (r=0.45-0.60), but not with changes in DFROM during gait (r=-0.02-0.08). Results suggest TAL causes a temporary reduction in forefoot pressure primarily by reducing PF power during gait. The initial decrease in forefoot pressure, followed by progressive reloading of forefoot tissues as PF muscles regain strength after TAL, may help reduce the risk of ulcer recurrence in patients with diabetes.  相似文献   

19.

Background

Various structural and functional factors of foot function have been associated with high local plantar pressures. The therapist focuses on these features which are thought to be responsible for plantar ulceration in patients with diabetes. Risk assessment of the diabetic foot would be made easier if locally elevated plantar pressure could be indicated with a minimum set of clinical measures.

Methods

Ninety three patients were evaluated through vascular, orthopaedic, neurological and radiological assessment. A pressure platform was used to quantify the barefoot peak pressure for six forefoot regions: big toe (BT) and metatarsals one (MT-1) to five (MT-5). Stepwise regression modelling was performed to determine which set of the clinical and radiological measures explained most variability in local barefoot plantar peak pressure in each of the six forefoot regions. Comprehensive models were computed with independent variables from the clinical and radiological measurements. The difference between the actual plantar pressure and the predicted value was examined through Bland-Altman analysis.

Results

Forefoot pressures were significant higher in patients with neuropathy, compared to patients without neuropathy for the whole forefoot, the MT-1 region and the MT-5 region (respectively 138 kPa, 173 kPa and 88 kPa higher: mean difference). The clinical models explained up to 39 percent of the variance in local peak pressures. Callus formation and toe deformity were identified as relevant clinical predictors for all forefoot regions. Regression models with radiological variables explained about 26 percent of the variance in local peak pressures. For most regions the combination of clinical and radiological variables resulted in a higher explained variance. The Bland and Altman analysis showed a major discrepancy between the predicted and the actual peak pressure values.

Conclusion

At best, clinical and radiological measurements could only explain about 34 percent of the variance in local barefoot peak pressure in this population of diabetic patients. The prediction models constructed with linear regression are not useful in clinical practice because of considerable underestimation of high plantar pressure values. Identification of elevated plantar pressure without equipment for quantification of plantar pressure is inadequate. The use of quantitative plantar pressure measurement for diabetic foot screening is therefore advocated.  相似文献   

20.
The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle–foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号