首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrition research is struggling to demonstrate beneficial health effects, since nutritional effects are often subtle and long term. Health has been redefined as the ability of our body to cope with daily-life challenges. Physiology acts as a well-orchestrated machinery to adapt to the continuously changing environment. We term this adaptive capacity “phenotypic flexibility.” The phenotypic flexibility concept implies that health can be measured by the ability to adapt to conditions of temporary stress, such as physical exercise, infections or mental stress, in a healthy manner. This may offer a more sensitive way to assess changes in health status of healthy subjects. Here, we performed a systematic review of 61 studies applying different nutritional stress tests to quantify health and nutritional health effects, with the objective to define an optimal nutritional stress test that has the potential to be adopted as the golden standard in nutrition research. To acknowledge the multi-target role of nutrition, a relevant subset of 50 processes that govern optimal health, with high relevance to diet, was used to define phenotypic flexibility. Subsequently, we assessed the response of biomarkers related to this subset of processes to the different challenge tests. Based on the obtained insights, we propose a nutritional stress test composed of a high-fat, high-caloric drink, containing 60 g palm olein, 75 g glucose and 20 g dairy protein in a total volume of 400 ml. The use of such a standardized nutritional challenge test in intervention studies is expected to demonstrate subtle improvements of phenotypic flexibility, thereby enabling substantiation of nutritional health effects.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-015-0459-1) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

The purpose of this study was to elucidate the interaction between mtDNA haplogroup and seasonal variation that contributes to cold adaptation.

Methods

There were 15 subjects (seven haplotype D subjects and eight haplotype non-D subjects). In summer and winter, the subjects were placed in an environment where the ambient temperature dropped from 27 °C to 10 °C in 30 minutes. After that, they were exposed to cold for 60 minutes.

Results

In summer, the decrease in rectal temperature and increase in oxygen consumption was smaller and cold tolerance was higher in the haplotype non-D group than in the haplotype D group. In winter, no significant differences were seen in rectal temperature or oxygen consumption, but the respiratory exchange ratio decreased in the haplotype D group.

Conclusions

The results of the present study suggest that haplogroup D subjects are a group that changes energy metabolism more, and there appears to be a relationship between differences in cold adaptability and mtDNA polymorphism within the population. Moreover, group differences in cold adaptability seen in summer may decrease in winter due to supplementation by seasonal cold acclimatization.  相似文献   

3.
Basal metabolic rate (BMR) of birds is beginning to be viewed as a highly flexible physiological trait influenced by environmental fluctuations, and in particular changes in ambient temperatures (Ta). Southern Africa is characterized by an unpredictable environment with daily and seasonal variation. This study sought to evaluate the effects of seasonal changes in Ta on mass-specific resting metabolic rate (RMR), BMR and body temperature (Tb) of Red-winged Starlings (Onychognathus morio). They have a broad distribution, from Ethiopia to the Cape in South Africa and are medium-sized frugivorous birds. Metabolic rate (VO2) and Tb were measured in wild caught Red-winged Starlings after a period of summer and winter acclimatization in outdoor aviaries. RMR and BMR were significantly higher in winter than summer. Body mass of Starlings was significantly higher in winter compared with summer. The increased RMR and BMR in winter indicate improved ability to cope with cold and maintenance of a high Tb. These results show that the metabolism of Red-winged Starlings are not constant, but exhibit a pronounced seasonal phenotypic flexibility with maintenance of a high Tb.  相似文献   

4.
Metabolic adaptation to a disturbance of homeostasis is determined by a series of interconnected physiological processes and molecular mechanisms that can be followed in space (i.e., different organs or organelles) and in time. The amplitudes of these responses of this “systems flexibility network” determine to what extent the individual can adequately react to external challenges of varying nature and thus determine the individual’s health status and disease predisposition. Connected pathways and regulatory networks act as “adaptive response systems” with metabolic and inflammatory processes as a core—but embedded into psycho-neuro-endocrine control mechanisms that in their totality define the phenotypic flexibility in an individual. Optimal metabolic health is thus the orchestration of all mechanisms and processes that maintain this flexibility in an organism as a phenotype. Consequently, onset of many chronic metabolic diseases results from impairment or even loss of flexibility in parts of the system. This also means that metabolic diseases need to be diagnosed and treated from a systems perspective referring to a “systems medicine” approach. This requires a far better understanding of the mechanisms involved in maintaining, optimizing and restoring phenotypic flexibility. Although a loss of flexibility in a specific part of the network may promote pathologies, this not necessarily takes place in the same part because the system compensates. Diagnosis at systems level therefore needs the quantification of the response reactions of all relevant parts of the phenotypic flexibility system. This can be achieved by disturbing the homeostatic system by any challenge from extended fasting, to intensive exercise or a caloric overload.  相似文献   

5.
The analysis of a local community of forest passerines (13 species) using phylogenetic contrasts shows a correlation between body size of bird species and mean prey size, minimum prey size, maximum prey size and the size range of dietary items. This suggests that larger birds drop small prey taxa from their prey list, because of the difficulty of capturing very small prey, for energetic reasons or because of microhabitat usage. We find some support for the third hypothesis. Dietary niche breadth calculated across prey taxa is not related to body size. Dietary niche breadth, however, is correlated with size-corrected measurements of the bill and locomotor apparatus. Long and slender bills increase the dietary niche breadth. Thus subtle differences constrain foraging and the techniques of extracting certain prey taxa form crevices. Dietary niche breadth and foraging diversity are positively correlated with population density: at least locally dietary generalists occur at higher breeding densities than specialists.  相似文献   

6.
Improved winter cold tolerance is widespread among small passerines resident in cold climates and is generally associated with elevated summit metabolic rate (Msum=maximum thermoregulatory metabolic rate) and improved shivering endurance with increased reliance on lipids as fuel. Elevated Msum and improved cold tolerance may result from greater metabolic intensity, due to mass-specific increase in oxidative enzyme capacity, or increase in the masses of thermogenic tissues. To examine the mechanisms underlying winter increases in Msum, we investigated seasonal changes in mass-specific and total activities of the key aerobic enzymes citrate synthase (CS) and β-hydroxyacyl CoA-dehydrogenase (HOAD) in pectoralis, supracoracoideus and mixed leg muscles of three resident passerine species, black-capped chickadee (Poecile atricapillus), house sparrow (Passer domesticus), and white-breasted nuthatch (Sitta carolinensis). Activities of CS were generally higher in winter than in summer muscles for chickadees and house sparrows, but not nuthatches. Mass-specific HOAD activity was significantly elevated in winter relative to summer in all muscles for chickadees, but did not vary significantly with season for sparrows or nuthatches, except for sparrow leg muscle. These results suggest that modulation of substrate flux and cellular aerobic capacity in muscle contribute to seasonal metabolic flexibility in some species and tissues, but such changes play varying roles among small passerines resident in cold climates.  相似文献   

7.
Seasonally-flooded wetlands occur throughout the world and provide important foraging, resting, and breeding habitat for a broad array of organisms. This review summarizes our current understanding of vertebrate community composition at seasonal forest pools in the northeastern United States. These wetlands typically have hydroperiods that range from temporarily flooded to intermittently exposed, which reduces densities of many potential predators (e.g., fish). Current research has shown that pool hydroperiod, canopy closure, vegetation structure within pools, presence of potential predators, and landscape structure surrounding pools are the key factors determining vertebrate diversity at seasonal forest pools. Of 25 species of amphibians in the region, frogs (10 of 12 species) are more likely to breed in seasonal forest pools than salamanders (6 of 13 species). Seven of 10 amphibian species that breed in seasonal forest pools are state-listed as threatened or endangered. Among 27 species of reptiles, 3 of 15 species of snakes, and 6 of 12 species of turtles utilize seasonal pools during at least one stage of their annual cycle. Seasonal forest pools are important foraging and basking habitat for three species of turtles listed as threatened or endangered. Compared to other vertebrate taxa, most species of mammals are habitat generalists, with 50 of 63 mammal species potentially foraging at seasonal pools during part of their annual cycle. Chiroptera (bats; all 9 species) are believed to actively forage at seasonal pools and some Insectivora, particularly Sorex palustris Richardson and S. fumeus (Miller) and Condylura cristata (L.), are detected regularly at seasonal pools. Breeding birds are less likely to utilize seasonal pools than other vertebrate taxa, although 92 of 233 species might forage or breed near seasonal pools. Several species of Anatidae, Rallidae, and some Passeriformes use seasonally flooded pools. All vertebrates that use seasonal forest pools use other habitats during some stage in their life cycle; thus gaining a clear understanding of their habitat requirements is critical to their long-term persistence.  相似文献   

8.
The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of metabolic power output) present a method for elucidating the effects of ecological and evolutionary factors on the interface between physiology and life history in birds. In this paper we review variation in avian metabolic rates [basal metabolic rate (BMR; minimum normothermic metabolic rate), ...  相似文献   

9.
This study provides values of anthropometric measurements and specific impedance, for a sample of 104 adults. The hypothesis that the body composition can be estimated more accurately from measurements of lengths and impedance values of the body segments than from the whole body was tested. The impedance of upper and lower extremities (arm and leg) and trunk were used to compute estimates of body composition parameters (FFM, FM, %F, TBW, ECW). The results were compared with those estimated by the impedance of the whole body. These comparisons demonstrated that significative differences resulted from body composition obtained by segmental impedance and by the whole body.  相似文献   

10.
The purpose of this study is to determine the relationship in college-aged women between somatotype using both Sheldon's ('69) and Heath and Carter's ('67) procedures, and body composition, as measured by whole-body 40K counting and body density. Sheldon's endomorphy is closely associated with height and weight; Heath and Carter's first component is significantly related to weight and body fatness. Lean body mass (LBM) as a weight or as a percent is not closely related to Sheldon's mesomorphy or Heath and Carter's second component. However, when LBM and height are used as independent variables to estimate somatotype, both variables are significantly related to Heath and Carter's second component, accounting for 61% of the variance. Thus Heath and Carter's second component is significantly associated with LBM for a given body height. Most of the variation in Sheldon's ectomorphy and Heath and Carter's third component can be accounted for by weight and height. Sheldon's somatotype for all three components is not as closely related to body composition as Heath-Carter's. Body composition, as measured by either 40K counting or body density, is found to be important in accounting for variation in Heath and Carter's first and second components.  相似文献   

11.
Interest in phenotypic flexibility has increased dramatically over the last decade, but flexibility during reproduction hasreceived relatively little attention from avian scientists, despite its possible impact on fitness. Because most avian species maintainatrophied reproductive organs when not active, reproduction in birds requires major tissue remodeling in preparation for breeding.Females undergo rapid (days) recrudescence and regression of their reproductive organs at each breeding attempt, while m...  相似文献   

12.
The relationship of body size and composition to maximum aerobic power output during work on a bicycle ergometer has been examined in older African subjects divided into three groups: Active men and inactive men and women. Comparison is made with similar data obtained on young African subjects (Davies, Mbelwa, Crockford and Weiner, '73). The results show that in the older men and women, in contrast to the young African subjects, there was complete lack of association between physiological function and body size and structure. In this latter group max was completely independent of body weight, lean body mass, and estimates of leg muscle volume. These findings confirm and extend the work of Davies ('72b) on Europeans and suggest that the main determinant of aerobic power output in older men irrespective of ethnic origin is more closely related to transport and utilization of O2 within a given active muscle mass than to the total quantity of muscle available to perform the work.  相似文献   

13.
House finches (Carpodacus mexicanus) from the introduced population in the eastern United States were examined to assess metabolic characteristics and aspects of body composition associated with seasonal acclimatization. Wild birds were captured during winter (January and February) and late spring (May and June) in southeastern Michigan. Standard metabolic rates did not differ seasonally, but cold-induced peak metabolic rate was 28% greater in winter than late spring. The capacity to maintain elevated metabolic rates during cold exposure (thermogenic endurance) increased significantly from an average of 26.1 to 101.3 min in late spring and winter, respectively. House finches captured in the late afternoon during winter had twice as much stored fat as those during late spring. Both the wet mass and lean dry mass of the pectoralis muscle, a primary shivering effector, were significantly greater during winter. The seasonal changes in peak metabolism and thermogenic endurance demonstrate the existence and magnitude of metabolic seasonal acclimatization in eastern house finches. Increased quantities of stored fat during winter appear to play a role in acclimatization, yet other physiological adjustments such as lipid mobilization and catabolism are also likely to be involved.Abbreviations bm body mass(es) - MR metabolic rate(s) - MR peak peak metabolic rate(s) - SMR standard metabolic rate(s)  相似文献   

14.

Background

From the viewpoint of human physiological adaptability, we previously investigated seasonal variation in the amount of unabsorbed dietary carbohydrates from the intestine after breakfast in Japanese, Polish and Thai participants. In this investigation we found that there were significant seasonal variations in the amount of unabsorbed dietary carbohydrates in Japanese and Polish participants, while we could not find significant seasonal variation in Thai participants. These facts prompted us to examine seasonal variations in the respiratory quotient after an overnight fast (an indicator of the ratio of carbohydrate and fat oxidized after the last meal) with female university students living in Osaka (Japan), Poznan (Poland) and Chiang Mai (Thailand).

Methods

We enrolled 30, 33 and 32 paid participants in Japan, Poland and Thailand, respectively, and measurements were taken over the course of one full year. Fasting respiratory quotient was measured with the participants in their postabsorptive state (after 12 hours or more fasting before respiratory quotient measurement). Respiratory quotient measurements were carried out by means of indirect calorimetry using the mixing chamber method. The percent body fat was measured using an electric bioelectrical impedance analysis scale. Food intake of the participants in Osaka and Poznan were carried out by the Food Frequency Questionnaire method.

Results

There were different seasonal variations in the fasting respiratory quotient values in the three different populations; with a significant seasonal variation in the fasting respiratory quotient values in Japanese participants, while those in Polish and Thai participants were non-significant. We found that there were significant seasonal changes in the percent body fat in the three populations but we could not find any significant correlation between the fasting respiratory quotient values and the percent body fat.

Conclusions

There were different seasonal variations in the fasting respiratory quotient values in the three different populations. There were significant seasonal changes in the percent body fat in the three populations but no significant correlation between the fasting respiratory quotient values and the percent body fat.  相似文献   

15.
Differences of thermostability were studied in red blood cells of the trout Salmo irideus differing in sex and age, as well as structural-dynamic characteristics of erythrocyte membrane proteins at seasonal acclimatization in the interval of reservoir water temperature of 0–19°C. An increase of resistance of erythrocytes to temperature lysis with elevation of the environmental temperature was revealed to be accompanied by a rise of the proteins segmental mobility and a decrease of intermolecular interactions in spectrin-actin cytoskeleton from the data of the ESR spin labeling method. Regulation of erythrocyte stability during acclimation was concluded to occur both changes of the fatty acids chain package at the variations of lipid composition and by changes of the cytoskeleton structural lability. Thereby this provides an increase of the bilayer firmness, on the one hand, while, on the other hand, a rise of elasticity and expansibility of the membrane on the whole, which increases resistance of cells to colloidal-osmotic hemolysis. Changes of concentration of oxygen dissolved in water, which are caused by temperature fluctuations, do not deem to be of crucial importance for structural stability of erythrocytes, as it can be compensated by another mechanism, specifically by changes of affinity of hemoglobin to oxygen.  相似文献   

16.
The accumulation of cryoprotectants and the redistribution of water between body compartments play central roles in the capacity of insects to survive freezing. Aquaporins (AQPs) allow for rapid redistribution of water and small solutes (e.g. glycerol) across the cell membrane and were recently implicated in promoting freeze tolerance. Here, we examined whether aquaporin-like protein abundance correlated with the seasonal acquisition of freezing tolerance in the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Through the autumn, larvae became tolerant of freezing at progressively lower temperatures and accumulated the cryoprotectant glycerol. Furthermore, larvae significantly increased the abundance of membrane-bound aquaporin and aquaglyceroporin-like proteins from July through January. Acute exposure of larvae to cold and desiccation resulted in upregulation of the AQP3-like proteins in October, suggesting that their abundance is regulated by environmental cues. The seasonal increase in abundance of both putative aquaporins and aquaglyceroporins supports the hypothesis that these proteins are closely tied to the seasonal acquisition of freeze tolerance, functioning to permit cells to quickly lose water and take-up glycerol during extracellular ice formation, as well as reestablish water and glycerol concentrations upon thawing.  相似文献   

17.
The energetic demands of long-distance migratory birds change drastically, depending on the stage of their life cycle. Changing demands are reflected in the up and down regulation of adipose tissue and organ mass. This paper presents new data on organ size changes during different stages of spring migration of garden warblers (Sylvia borin). Phenotypic mass changes were quantified in 13 organs of birds caught in Tanzania, Ethiopia and Egypt. We also sampled birds after a simulated stopover in Egypt. Some organs increased in mass up to about 1.5-fold during migration from Tanzania to Ethiopia, while some remained unchanged or even decreased in mass. During flight across the Sahara, nearly all organ masses including heart and flight muscles were reduced. Exceptionally large reductions (approximately 50%) were observed for liver, bile, spleen, kidney and digestive tract organs. The only exceptions were the testes, which increased 4-fold in mass. During the simulated stopover in Egypt, a significant recovery was observed for kidney, liver, heart, proventriculus, and small intestine. The testes continued to increase in mass. Flexible remodeling of organ size in the course of spring migration thus comprises significant changes for all quantified organs, with a variety of organ-specific patterns. Individual organ patterns are differentially shaped by functional aspects according to the different organ requirements in the alternation of flight and stopover phases, energetics, future demands, and protein requirements. Anticipatory mechanisms account for the size change of the testes, and we suggest the same for the kidney and the gall bladder.  相似文献   

18.
19.
Summary The effect of the postnatal maternal environment, simulated by rearing mice in litters of three, six or nine, on body weight and body composition was investigated in three lines of mice differing widely in growth rate. The lines were selected for high (H6) and low (L6) 6-week body weight while the control line was maintained by random selection. Body weight and weights and percentages of ether extract, water, ash and protein at 21, 42, 63 and 84 days were recorded. With few exceptions, there were positive correlated responses to selection in body weight and in weights of body components. At 21 and 42 days the correlated responses were larger in L6 mice than in H6 mice. Body weight and weights of body components were larger for mice reared in litters of three than for those reared in litters of nine. Also, mice reared in litters of six were intermediate in body weight and weights of some of the body components between those reared in litters of three and nine. Differences in body weight and weights of body components due to postnatal maternal environment were small by comparison with differences due to genetic line. There were significant line by maternal environment interactions in body weight at 21 days and in ether extract weight at 21 and 63 days. Line and maternal environment differences in percentages of body components did not follow any consistent trend. The results for percentages of body components were further complicated by line x maternal environment interactions. In general, both line and postnatal maternal environmental differences in percentages of body components diminished with age.Paper No. 5670 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina 27650. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Experiment Station of the products named, nor criticism of similar ones not mentioned  相似文献   

20.
The effects of socioeconomic differences on the nutritional status of two groups of urban living children are considered via an anthropometric assessment of body composition. The sample consists of 981 Guatemala City children, 7.00 to 13.99 years old, of high and low socioeconomic status (SES). High SES children have larger median values for triceps skinfold, subscapular skinfold, arm circumference, and estimated mid-arm muscle and fat areas than low SES children. Compared with children of a US reference sample, the high SES children generally have larger values for all variables and the low SES children have smaller values. However, the differences between the low SES children and the children of the other two samples are greater for arm fat area than for arm muscle area. The analysis suggests that low SES Guatemalan children suffer to a greater extent from chronic energy, rather than protein, undernutrition. A similar pattern of energy malnutrition has been observed for rural Guatemalan children. These combined data suggest that estimates of fat reserves of the arm provide a useful indication of nutritional status for Third-World children. Results from rural Costa Rican and Honduran studies have been taken to mean that muscle reserves are better than fat reserves as indicators of nutritional status in developing countries. But, those studies did not estimate cross-sectional muscle and fat areas and only considered the extremes of the population distribution for muscle and fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号