首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.

Background

Human cryptococcal infections have been associated with bird droppings as a likely source of infection. Studies toward the local and global epidemiology of Cryptococcus spp. have been hampered by the lack of rapid, discriminatory, and exchangeable molecular typing methods.

Methodology/Principal Findings

We selected nine microsatellite markers for high-resolution fingerprinting from the genome of C. neoformans var. grubii. This panel of markers was applied to a collection of clinical (n = 122) and environmental (n = 68; from pigeon guano) C. neoformans var. grubii isolates from Cuba. All markers proved to be polymorphic. The average number of alleles per marker was 9 (range 5–51). A total of 104 genotypes could be distinguished. The discriminatory power of this panel of markers was 0.993. Multiple clusters of related genotypes could be discriminated that differed in only one or two microsatellite markers. These clusters were assigned as microsatellite complexes. The majority of environmental isolates (>70%) fell into 1 microsatellite complex containing only few clinical isolates (49 environmental versus 2 clinical). Clinical isolates were segregated over multiple microsatellite complexes.

Conclusions/Significance

A large genotypic variation exists in C. neoformans var. grubii. The genotypic segregation between clinical and environmental isolates from pigeon guano suggests additional source(s) of human cryptococcal infections. The selected panel of microsatellite markers is an excellent tool to study the epidemiology of C. neoformans var. grubii.  相似文献   

2.

Background

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for yeast identification is limited by the requirement for protein extraction and for robust reference spectra across yeast species in databases. We evaluated its ability to identify a range of yeasts in comparison with phenotypic methods.

Methods

MALDI-TOF MS was performed on 30 reference and 167 clinical isolates followed by prospective examination of 67 clinical strains in parallel with biochemical testing (total n = 264). Discordant/unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene cluster.

Principal Findings

Twenty (67%; 16 species), and 24 (80%) of 30 reference strains were identified to species, (spectral score ≥2.0) and genus (score ≥1.70)-level, respectively. Of clinical isolates, 140/167 (84%) strains were correctly identified with scores of ≥2.0 and 160/167 (96%) with scores of ≥1.70; amongst Candida spp. (n = 148), correct species assignment at scores of ≥2.0, and ≥1.70 was obtained for 86% and 96% isolates, respectively (vs. 76.4% by biochemical methods). Prospectively, species-level identification was achieved for 79% of isolates, whilst 91% and 94% of strains yielded scores of ≥1.90 and ≥1.70, respectively (100% isolates identified by biochemical methods). All test scores of 1.70–1.90 provided correct species assignment despite being identified to “genus-level”. MALDI-TOF MS identified uncommon Candida spp., differentiated Candida parapsilosis from C. orthopsilosis and C. metapsilosis and distinguished between C. glabrata, C. nivariensis and C. bracarensis. Yeasts with scores of <1.70 were rare species such as C. nivariensis (3/10 strains) and C. bracarensis (n = 1) but included 4/12 Cryptococcus neoformans. There were no misidentifications. Four novel species-specific spectra were obtained. Protein extraction was essential for reliable results.

Conclusions

MALDI-TOF MS enabled rapid, reliable identification of clinically-important yeasts. The addition of spectra to databases and reduction in identification scores required for species-level identification may improve its utility.  相似文献   

3.

Objective

The aim of this study was to use spoligotyping and large sequence polymorphism (LSP) to study the population structure of M. tuberculosis complex (MTBC) isolates.

Methods

MTBC isolates were identified using standard biochemical procedures, IS6110 PCR, and large sequence polymorphisms. Isolates were further typed using spoligotyping, and the phenotypic drug susceptibility patterns were determined by the proportion method.

Result

One hundred and sixty-two isolates were characterised by LSP typing. Of these, 130 (80.25%) were identified as Mycobacterium tuberculosis sensu stricto (MTBss), with the Cameroon sub-lineage being dominant (N = 59/130, 45.38%). Thirty-two (19.75%) isolates were classified as Mycobacterium africanum type 1, and of these 26 (81.25%) were identified as West-Africa I, and 6 (18.75%) as West-Africa II. Spoligotyping sub-lineages identified among the MTBss included Haarlem (N = 15, 11.53%), Ghana (N = 22, 16.92%), Beijing (4, 3.08%), EAI (4, 3.08%), Uganda I (4, 3.08%), LAM (2, 1.54%), X (N = 1, 0.77%) and S (2, 1.54%). Nine isolates had SIT numbers with no identified sub-lineages while 17 had no SIT numbers. MTBss isolates were more likely to be resistant to streptomycin (p<0.008) and to any drug resistance (p<0.03) when compared to M. africanum.

Conclusion

This study demonstrated that overall 36.4% of TB in South-Western Ghana is caused by the Cameroon sub-lineage of MTBC and 20% by M. africanum type 1, including both the West-Africa 1 and West-Africa 2 lineages. The diversity of MTBC in Ghana should be considered when evaluating new TB vaccines.  相似文献   

4.

Background

In order to control malaria, it is important to understand the genetic structure of the parasites in each endemic area. Plasmodium vivax is widely distributed in the tropical to temperate regions of Asia and South America, but effective strategies for its elimination have yet to be designed. In South Korea, for example, indigenous vivax malaria was eliminated by the late 1970s, but re-emerged from 1993. We estimated the population structure and temporal dynamics of transmission of P. vivax in South Korea using microsatellite DNA markers.

Methodology/Principal Findings

We analyzed 255 South Korean P. vivax isolates collected from 1994 to 2008, based on 10 highly polymorphic microsatellite DNA loci of the P. vivax genome. Allelic data were obtained for the 87 isolates and their microsatellite haplotypes were determined based on a combination of allelic data of the loci. In total, 40 haplotypes were observed. There were two predominant haplotypes: H16 and H25. H16 was observed in 9 isolates (10%) from 1996 to 2005, and H25 in 27 (31%) from 1995 to 2003. These results suggested that the recombination rate of P. vivax in South Korea, a temperate country, was lower than in tropical areas where identical haplotypes were rarely seen in the following year. Next, we estimated the relationships among the 40 haplotypes by eBURST analysis. Two major groups were found: one composed of 36 isolates (41%) including H25; the other of 20 isolates (23%) including H16. Despite the low recombination rate, other new haplotypes that are genetically distinct from the 2 groups have also been observed since 1997 (H27).

Conclusions/Significance

These results suggested a continual introduction of P. vivax from other population sources, probably North Korea. Molecular epidemiology using microsatellite DNA of the P. vivax population is effective for assessing the population structure and transmission dynamics of the parasites - information that can assist in the elimination of vivax malaria in endemic areas.  相似文献   

5.

Background

Investigation of genetic heterogeneity and spoligotype-defined lineages of drug-resistant Mycobacterium tuberculosis clinical isolates collected during a three-year period in two university hospitals and National Tuberculosis Reference and Research Laboratory in Ankara, Turkey.

Methods and Findings

A total of 95 drug-resistant M. tuberculosis isolates collected from three different centers were included in this study. Susceptibility testing of the isolates to four major antituberculous drugs was performed using proportion method on Löwenstein–Jensen medium and BACTEC 460-TB system. All clinical isolates were typed by using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) methods. Seventy-three of the 95 (76.8%) drug resistant M. tuberculosis isolates were isoniazid-resistant, 45 (47.4%) were rifampicin-resistant, 32 (33.7%) were streptomycin-resistant and 31 (32.6%) were ethambutol-resistant. The proportion of multidrug-resistant isolates (MDR) was 42.1%. By using spoligotyping, 35 distinct patterns were observed; 75 clinical isolates were grouped in 15 clusters (clustering rate of 79%) and 20 isolates displayed unique patterns. Five of these 20 unique patterns corresponded to orphan patterns in the SITVIT2 database, while 4 shared types containing 8 isolates were newly created. The most prevalent M. tuberculosis lineages were: Haarlem (23/95, 24.2%), ill-defined T superfamily (22/95, 23.2%), the Turkey family (19/95, 20%; previously designated as LAM7-TUR), Beijing (6/95, 6.3%), and Latin-America & Mediterranean (LAM, 5/95 or 5.3%), followed by Manu (3/95, 3.2%) and S (1/95, 1%) lineages. Four of the six Beijing family isolates (66.7%) were MDR. A combination of IS6110-RFLP and spoligotyping reduced the clustering rate from 79% to 11.5% among the drug resistant isolates.

Conclusions

The results obtained showed that ill-defined T, Haarlem, the Turkey family (previously designated as LAM7-TUR family with high phylogeographical specifity for Turkey), Beijing and LAM were predominant lineages observed in almost 80% of the drug-Resistant M. tuberculosis complex clinical isolates in Ankara, Turkey.  相似文献   

6.

Background

PCR-based serotyping of Streptococcus pneumoniae has been proposed as a simpler approach than conventional methods, but has not been applied to strains in Asia where serotypes are diverse and different from other part of the world. Furthermore, PCR has not been used to determine serotype distribution in culture-negative meningitis cases.

Methodology

Thirty six serotype-specific primers, 7 newly designed and 29 previously published, were arranged in 7 multiplex PCR sets, each in new hierarchies designed for overall serotype distribution in Bangladesh, and specifically for meningitis and non-meningitis isolates. Culture-negative CSF specimens were then tested directly for serotype-specific sequences using the meningitis-specific set of primers. PCR-based serotyping of 367 strains of 56 known serotypes showed 100% concordance with quellung reaction test. The first 7 multiplex reactions revealed the serotype of 40% of all, and 31% and 48% non-meningitis and meningitis isolates, respectively. By redesigning the multiplex scheme specifically for non-meningitis or meningitis, the quellung reaction of 43% and 48% of respective isolates could be identified. Direct examination of 127 culture-negative CSF specimens, using the meningitis-specific set of primers, yielded serotype for 51 additional cases.

Conclusions

This PCR approach, could improve ascertainment of pneumococcal serotype distributions, especially for meningitis in settings with high prior use of antibiotics.  相似文献   

7.

Background

We conducted a surveillance study to determine the leading causes of bloodstream infection in febrile patients seeking treatment at three district hospitals in Pemba Island, Zanzibar, Tanzania, an area with low malaria transmission.

Methods

All patients above two months of age presenting to hospital with fever were screened, and blood was collected for microbiologic culture and malaria testing. Bacterial sepsis and malaria crude incidence rates were calculated for a one-year period and were adjusted for study participation and diagnostic sensitivity of blood culture.

Results

Blood culture was performed on 2,209 patients. Among them, 166 (8%) samples yielded bacterial growth; 87 (4%) were considered as likely contaminants; and 79 (4%) as pathogenic bacteria. The most frequent pathogenic bacteria isolated were Salmonella Typhi (n = 46; 58%), followed by Streptococcus pneumoniae (n = 12; 15%). The crude bacteremia rate was 6/100,000 but when adjusted for potentially missed cases the rate may be as high as 163/100,000. Crude and adjusted rates for S. Typhi infections and malaria were 4 and 110/100,000 and 4 and 47/100,000, respectively. Twenty three (51%), 22 (49%) and 22 (49%) of the S.Typhi isolates were found to be resistant toward ampicillin, chloramphenicol and cotrimoxazole, respectively. Multidrug resistance (MDR) against the three antimicrobials was detected in 42% of the isolates.

Conclusions

In the presence of very low malaria incidence we found high rates of S. Typhi and S. pneumoniae infections on Pemba Island, Zanzibar. Preventive measures such as vaccination could reduce the febrile disease burden.  相似文献   

8.

Background

Coagulase-negative staphylococci, mainly Staphylococcus epidermidis, are the most frequent cause of late-onset sepsis (LOS) in the neonatal intensive care unit (NICU) setting. However, recent reports indicate that methicillin-resistant, vancomycin-heteroresistant Staphylococcus capitis could emerge as a significant pathogen in the NICU. We investigated the prevalence, clonality and vancomycin susceptibility of S. capitis isolated from the blood of NICU infants and compared these data to adult patients.

Methodology/Principal Findings

We conducted a retrospective laboratory-based survey of positive blood cultures in NICU infants ≥3 days of age (n = 527) and in adult ICU patients ≥18 years of age (n = 1473) who were hospitalized from 2004 to 2009 in two hospital centers in Lyon, France. S. capitis was the most frequent pathogen in NICU infants, ahead of S. epidermidis (39.1% vs. 23.5% of positive blood cultures, respectively). Conversely, S. capitis was rarely found in adult ICU patients (1.0%) compared to S. epidermidis (15.3%). S. capitis bloodstream isolates were more frequently resistant to methicillin when collected from NICU infants than from adult patients (95.6% vs. 53.3%, respectively). Furthermore, we collected and characterized 53 S. capitis bloodstream isolates from NICU infants and adult patients from six distant cities. All methicillin-resistant S. capitis isolates from NICU infants were clonally related as determined by pulsed-field gel electrophoresis. These isolates harbored a type V-related staphylococcal chromosomal cassette mec element, and constantly showed either vancomycin resistance (37.5%) or heteroresistance (62.5%). Conversely, the isolates that were collected outside of the NICU were genetically diverse and displayed much lower rates of vancomycin resistance and heteroresistance (7.7% and 23.1%, respectively).

Conclusions/Significance

A clonal population of methicillin-resistant S. capitis strains has spread into several French NICUs. These isolates exhibit reduced susceptibility to vancomycin, which is the most widely used antimicrobial agent in the NICU setting.  相似文献   

9.

Background

Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem especially in developing countries. Vaccines against typhoid are commonly used by travelers but less so by residents of endemic areas.

Methodology

We used single nucleotide polymorphism (SNP) typing to investigate the population structure of 372 S. Typhi isolated during a typhoid disease burden study and Vi vaccine trial in Kolkata, India. Approximately sixty thousand people were enrolled for fever surveillance for 19 months prior to, and 24 months following, Vi vaccination of one third of the study population (May 2003–December 2006, vaccinations given December 2004).

Principal Findings

A diverse S. Typhi population was detected, including 21 haplotypes. The most common were of the H58 haplogroup (69%), which included all multidrug resistant isolates (defined as resistance to chloramphenicol, ampicillin and co-trimoxazole). Quinolone resistance was particularly high among H58-G isolates (97% Nalidixic acid resistant, 30% with reduced susceptibility to ciprofloxacin). Multiple typhoid fever episodes were detected in 22 households, however household clustering was not associated with specific S. Typhi haplotypes.

Conclusions

Typhoid fever in Kolkata is caused by a diverse population of S. Typhi, however H58 haplotypes dominate and are associated with multidrug and quinolone resistance. Vi vaccination did not obviously impact on the haplotype population structure of the S. Typhi circulating during the study period.  相似文献   

10.

Background

Two bovine species contribute to the Indonesian livestock, zebu (Bos indicus) and banteng (Bos javanicus), respectively. Although male hybrid offspring of these species is not fertile, Indonesian cattle breeds are supposed to be of mixed species origin. However, this has not been documented and is so far only supported by preliminary molecular analysis.

Methods and Findings

Analysis of mitochondrial, Y-chromosomal and microsatellite DNA showed a banteng introgression of 10–16% in Indonesian zebu breeds. East-Javanese Madura and Galekan cattle have higher levels of autosomal banteng introgression (20–30%) and combine a zebu paternal lineage with a predominant (Madura) or even complete (Galekan) maternal banteng origin. Two Madura bulls carried taurine Y-chromosomal haplotypes, presumably of French Limousin origin. In contrast, we did not find evidence for zebu introgression in five populations of the Bali cattle, a domestic form of the banteng.

Conclusions

Because of their unique species composition Indonesian cattle represent a valuable genetic resource, which potentially may also be exploited in other tropical regions.  相似文献   

11.

Background

Pneumococcal infections cause major morbidity and mortality in developing countries. We report the epidemiology of S. pneumoniae carriage in a developing region, the Gaza strip, and evaluate the theoretical coverage of carriage strains by pneumococcal conjugate vaccines (PCVs).

Methodology

In 2009 we conducted a cross-sectional survey of S. pneumoniae carriage in healthy children and their parents, living throughout the Gaza strip. Data were collected and nasopharyngeal swabs were obtained. Antibiotic susceptibilities were determined by Vitek-2 and serotypes by the Quellung reaction.

Principal Findings

S. pneumoniae carriage was detected in 189/379 (50%) of children and 30/376 (8%) of parents. Carriage prevalence was highest in children <6 months of age (63%). Significant predictors for child carriage were number of household members and DCC attendance. The proportion of pediatric and adults isolates with serotypes included in PCV7 were 32% and 20% respectively, and 46% and 33% in PCV13 respectively. The most prominent non-vaccine serotypes (NVT) were 35B, 15B/C and 23B. Penicillin-nonsusceptible strains were carried by70% of carriers, penicillin-resistant strains (PRSP) by 13% and Multi-drug-resistant (MDR) by 30%. Of all PRSP isolates 54% belonged to serotypes included in PCV7 and 71% in the PCV13. Similarly, 59% and 73% of MDR-SP isolates, would theoretically be covered by PCV7 and PCV13, respectively.

Conclusions

This study demonstrates that, PCV13-included strains were carried by 46% and 33% of pediatric and adult subjects respectively. In the absence of definitive data regarding the virulence of the NVT strains, it is difficult to predict the effect of PCVs on IPD in this region.  相似文献   

12.
Iqbal A  Lim YA  Surin J  Sim BL 《PloS one》2012,7(2):e31139

Background

Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients.

Methodology/Principal Findings

In this study, 346 faecal samples collected from Malaysian HIV positive patients were genetically analysed via PCR targeting the 60 kDa glycoprotein (gp60) gene. Eighteen (5.2% of 346) isolates were determined as Cryptosporidium positive with 72.2% (of 18) identified as Cryptosporidium parvum whilst 27.7% as Cryptosporidium hominis. Further gp60 analysis revealed C. parvum belonging to subgenotypes IIaA13G1R1 (2 isolates), IIaA13G2R1 (2 isolates), IIaA14G2R1 (3 isolates), IIaA15G2R1 (5 isolates) and IIdA15G1R1 (1 isolate). C. hominis was represented by subgenotypes IaA14R1 (2 isolates), IaA18R1 (1 isolate) and IbA10G2R2 (2 isolates).

Conclusions/Significance

These findings highlighted the presence of high diversity of Cryptosporidium subgenotypes among Malaysian HIV infected individuals. The predominance of the C. parvum subgenotypes signified the possibility of zoonotic as well as anthroponotic transmissions of cryptosporidiosis in HIV infected individuals.  相似文献   

13.

Background

Drug resistant typhoid fever is a major clinical problem globally. Many of the first line antibiotics, including the older generation fluoroquinolones, ciprofloxacin and ofloxacin, are failing.

Objectives

We performed a randomised controlled trial to compare the efficacy and safety of gatifloxacin (10 mg/kg/day) versus azithromycin (20 mg/kg/day) as a once daily oral dose for 7 days for the treatment of uncomplicated typhoid fever in children and adults in Vietnam.

Methods

An open-label multi-centre randomised trial with pre-specified per protocol analysis and intention to treat analysis was conducted. The primary outcome was fever clearance time, the secondary outcome was overall treatment failure (clinical or microbiological failure, development of typhoid fever-related complications, relapse or faecal carriage of S. typhi).

Principal Findings

We enrolled 358 children and adults with suspected typhoid fever. There was no death in the study. 287 patients had blood culture confirmed typhoid fever, 145 patients received gatifloxacin and 142 patients received azithromycin. The median FCT was 106 hours in both treatment arms (95% Confidence Interval [CI]; 94–118 hours for gatifloxacin versus 88–112 hours for azithromycin), (logrank test p = 0.984, HR [95% CI] = 1.0 [0.80–1.26]).Overall treatment failure occurred in 13/145 (9%) patients in the gatifloxacin group and 13/140 (9.3%) patients in the azithromycin group, (logrank test p = 0.854, HR [95% CI] = 0.93 [0.43–2.0]). 96% (254/263) of the Salmonella enterica serovar Typhi isolates were resistant to nalidixic acid and 58% (153/263) were multidrug resistant.

Conclusions

Both antibiotics showed an excellent efficacy and safety profile. Both gatifloxacin and azithromycin can be recommended for the treatment of typhoid fever particularly in regions with high rates of multidrug and nalidixic acid resistance. The cost of a 7-day treatment course of gatifloxacin is approximately one third of the cost of azithromycin in Vietnam.

Trial Registration

Controlled-Trials.com ISRCTN67946944  相似文献   

14.

Background

The epidemiology of non-Typhi Salmonella (NTS) bacteremia in Africa will likely evolve as potential co-factors, such as HIV, malaria, and urbanization, also change.

Methods

As part of population-based surveillance among 55,000 persons in malaria-endemic, rural and malaria-nonendemic, urban Kenya from 2006–2009, blood cultures were obtained from patients presenting to referral clinics with fever ≥38.0°C or severe acute respiratory infection. Incidence rates were adjusted based on persons with compatible illnesses, but whose blood was not cultured.

Results

NTS accounted for 60/155 (39%) of blood culture isolates in the rural and 7/230 (3%) in the urban sites. The adjusted incidence in the rural site was 568/100,000 person-years, and the urban site was 51/100,000 person-years. In both sites, the incidence was highest in children <5 years old. The NTS-to-typhoid bacteremia ratio in the rural site was 4.6 and in the urban site was 0.05. S. Typhimurium represented >85% of blood NTS isolates in both sites, but only 21% (urban) and 64% (rural) of stool NTS isolates. Overall, 76% of S. Typhimurium blood isolates were multi-drug resistant, most of which had an identical profile in Pulse Field Gel Electrophoresis. In the rural site, the incidence of NTS bacteremia increased during the study period, concomitant with rising malaria prevalence (monthly correlation of malaria positive blood smears and NTS bacteremia cases, Spearman''s correlation, p = 0.018 for children, p = 0.16 adults). In the rural site, 80% of adults with NTS bacteremia were HIV-infected. Six of 7 deaths within 90 days of NTS bacteremia had HIV/AIDS as the primary cause of death assigned on verbal autopsy.

Conclusions

NTS caused the majority of bacteremias in rural Kenya, but typhoid predominated in urban Kenya, which most likely reflects differences in malaria endemicity. Control measures for malaria, as well as HIV, will likely decrease the burden of NTS bacteremia in Africa.  相似文献   

15.

Background

Mycoplasma genitalium (MG) causes urethritis, cervicitis and pelvic inflammatory disease. The MG treatment failure rate using 1 g azithromycin at an Australian Sexual Health clinic in 2007–9 was 31% (95%CI 23–40%). We developed a rapid high resolution melt analysis (HRMA) assay targeting resistance mutations in the MG 23S rRNA gene, and validated it against DNA sequencing by examining pre- and post-treatment archived samples from MG-infected patients.

Methodology/Principal Findings

Available MG-positive pre-treatment (n = 82) and post-treatment samples from individuals with clinical treatment failure (n = 20) were screened for 23S rRNA gene mutations. Sixteen (20%) pre-treatment samples possessed resistance mutations (A2058G, A2059G, A2059C), which were significantly more common in patients with symptomatic azithromycin-treatment failure (12/26; 44%) than in those clinically cured (4/56; 7%), p<0.001. All 20 patients experiencing azithromycin-failure had detectable mutations in their post-treatment samples. In 9 of these cases, the same mutational types were present in both pre- and post-treatment samples indicating transmitted resistance, whilst in 11 of these cases (55%), mutations were absent in pre-treatment samples indicating likely selection of resistant isolates have occurred. HRMA was able to detect all mutational changes determined in this study by DNA sequencing. An additional HRMA assay incorporating an unlabelled probe was also developed to detect type 4 single-nucleotide polymorphisms found in other populations, with a slightly lower sensitivity of 90%.

Conclusions/Significance

Treatment failure is associated with the detection of macrolide resistance mutations, which appear to be almost equally due to selection of resistant isolates following exposure to 1 g azithromycin and pre-existing transmitted resistance. The application of a rapid molecular assay to detect resistance at the time of initial detection of infection allows clinicians to shorten the time to initiate effective second line treatment. This has the potential to reduce transmission of resistant strains and to avoid sequelae associated with persistent untreated infection.  相似文献   

16.

Background

Early administration of appropriate antibiotic therapy in bacteraemia patients dramatically reduces mortality. A new method for RApid Molecular Antibiotic Susceptibility Testing (RAMAST) that can be applied directly to positive blood cultures was developed and evaluated.

Methodology/Principal Findings

Growth curves and antibiotic susceptibility of blood culture isolates (Staphylococcus aureus, enterococci and (facultative) aerobic Gram-negative rods) were determined by incubating diluted blood cultures with and without antibiotics, followed by a quantitative universal 16S PCR to detect the presence or absence of growth. Testing 114 positive blood cultures, RAMAST showed an agreement with microbroth dilution of 96.7% for Gram-negative rods, with a minor error (false-susceptibility with a intermediate resistant strain) rate of 1.9%, a major error (false resistance) rate of 0.8% and a very major error (false susceptibility) rate of 0.6%. Agreement for S.aureus was 97.9%, with a very major error rate of 2.1%. Enterococcus species showed 95.0% agreement, with a major error rate of 5.0%. These agreements are comparable with those of the Phoenix system. Starting from a positive blood culture, the test was completed within 9 hours.

Conclusions/Significance

This new rapid method for antibiotic susceptibility testing can potentially provide accurate results for most relevant bacteria commonly isolated from positive blood cultures in less time than routine methods.  相似文献   

17.

Background

Among members of Cryptococcus neoformans- Cryptococcus gattii species complex, C. neoformans is distributed worldwide whereas C. gattii is considered to be more prevalent in the subtropics and tropics including Taiwan. This nationwide study was undertaken to determine the distribution of genotypes, clinical characteristics and outcomes of 219 patients with proven cryptococcosis at 20 hospitals representative of all geographic areas in Taiwan during 1997–2010.

Methods and Findings

Of 219 isolates analyzed, C. neoformans accounted for 210 isolates (95.9%); nine isolates were C. gattii (4.1%). The predominant genotype was VNI (206 isolates). The other genotypes included VNII (4 isolates), VGI (3 isolates) and VGII (6 isolates). Antifungal minimal inhibition concentrations higher than epidemiologic cutoff values (ECVs) were found in nine VNI isolates (7 for amphotericin B). HIV infection was the most common underlying condition (54/219, 24.6%). Among HIV-negative patients, liver diseases (HBV carrier or cirrhosis) were common (30.2%) and 15.4% did not have any underlying condition. Meningoencephalitis was the most common presentation (58.9%), followed by pulmonary infection (19.6%) and “others” (predominantly cryptococcemia) (18.7%). The independent risk factors for 10-week mortality, by multivariate analysis, were cirrhosis of liver (P = 0.014) and CSF cryptococcal antigen titer ≥512 (P = 0.020). All except one of 54 HIV-infected patients were infected by VNI genotype (98.1%). Of the 13 isolates of genotypes other than VNI, 12 (92.3%) were isolated from HIV-negative patients. HIV-infected patients compared to HIV-negative patients were more likely to have meningoencephalitis and serum cryptococcal antigen ≥1∶512. Patients infected with C. gattii compared to C. neoformans were younger, more likely to have meningoencephalitis (100% vs. 57%), reside in Central Taiwan (56% vs. 31%), and higher 10-week crude mortality (44.4% vs. 22.2%).

Conclusions

Cryptococcus neoformans in Taiwan, more prevalent than C. gatii, has a predominant VNI genotype. Isolates with antifungal MIC higher than ECVs were rare.  相似文献   

18.
Qi YC  Ma MJ  Li DJ  Chen MJ  Lu QB  Li XJ  Li JL  Liu W  Cao WC 《PloS one》2012,7(2):e32103

Background

The multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) has emerged as a global threat. Xinjiang is a multi-ethnic region and suffered second highest incidence of TB in China. However, epidemiological information on MDR and XDR TB is scarcely investigated.

Methodology/Principal Findings

A prospective study was conducted to analyze the prevalence of MDR and XDR TB and the differences of drug resistance TB between Chinese Han and other nationalities population at Chest Hospital of Xinjiang Uygur Autonomous Region, China. We performed in vitro drug susceptibility testing of Mycobacterium tuberculosis to first- and second-line anti-tuberculosis drugs for all 1893 culture confirmed positive TB cases that were diagnosed between June 2009 and June 2011. Totally 1117 (59.0%, 95% CI, 56.8%–61.2%) clinical isolates were resistant to ≥1 first-line drugs; the prevalence of MDR TB was 13.2% (95% CI, 11.7%–14.7%), of which, 77 (30.8%; 95% CI, 25.0%–36.6%) and 31 (12.8%; 95% CI, 8.6%–17.0%) isolates were pre-XDR and XDR TB respectively. Among the MDR/XDR TB, Chinese Han patients were significantly less likely to be younger with an odds ratio 0.42 for age 20–29 years and 0.52 for age 40–49 years; P trend = 0.004), and Chinese Han patients has a lower prevalence of XDR TB (9.6%) than all the other nationality (14.9%).

Conclusions/Significance

The burden of drug resistance TB cases is sizeable, which highlights an urgent need to reinforce the control, detection and treatment strategies for drug resistance TB. However, the difference of MDR and XDR TB between Chinese Han and other nationalities was not observed.  相似文献   

19.
20.
Cryptococcus neoformans var. grubii (serotype A) was isolated from 12 soil samples mixed with pigeon droppings (16.9%) from 71 soil samples in Barcelona and rural areas of Catalonia. C. neoformans was not isolated from indoor dust and Eucalyptus debris. PCR fingerprinting was performed in 22 representative isolates and all of them corresponded to the VNI pattern. Susceptibility testing for the 22 isolates of C. neoformans var. grubii showed that all of them were susceptible to amphotericin B. Three isolates presented MICs (Minimal Inhibitory Concentrations) ≥ 1 μg/ml to Itraconazole, five MICs ≥ 1 μg/ml to ketoconazole and four were fluconazole resistant, (MICs ≥ 64 μg/ml), while three of them were shown to have MICs ≥ 1 μg/ml to voriconazole. In spite that all isolates presented the same DNA fingerprinting pattern, the susceptibility to antifungals is very variable. The possibility of acquiring cryptococcosis infection with primarily resistant environment strains is feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号