首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Disruption of corticostriatal glutamate input in the striatum decreased significantly extracellular striatal glutamate and dopamine levels. Local administration of 300 µ M concentration of excitatory receptor agonist kainic acid increased significantly extracellular striatal dopamine in intact freely moving rats. These findings support the hypothesis that glutamate exerts a tonic facilitatory effect on striatal dopamine release. The effect of kainic acid on extracellular striatal glutamate concentration in intact rats was a biphasic increase. The first glutamate increase can be explained by stimulation of presynaptic kainate receptors present on corticostriatal glutamatergic nerve terminals; the second increase is probably the result of a continuous interaction of the different striatal neurotransmitters after disturbance of their balance. Release of dopamine and glutamate was modulated differently in the intact striatum and in the striatum deprived of corticostriatal input. Dopamine release in the denervated striatum after kainate receptor stimulation was significantly lower than in intact striatum, confirming the so-called cooperativity between glutamate and kainic acid. Loss of presynaptic kainate receptors on the glutamatergic nerve terminals after decortication resulted in a loss of effect of kainic acid on glutamate release in denervated striatum. Aspartate showed no significant changes in this study.  相似文献   

2.
Zheng  Xuefeng  Huang  Ziyun  Zhu  Yaofeng  Liu  Bingbing  Chen  Zhi  Chen  Tao  Jia  Linju  Li  Yanmei  Lei  Wanlong 《Neurochemical research》2019,44(5):1079-1089

Dopaminergic neuron degeneration is known to give rise to dendrite injury and spine loss of striatal neurons, however, changes of intrastriatal glutamatergic terminals and their synapses after 6-hydroxydopamine (6OHDA)-induced dopamine (DA)-depletion remains controversial. To confirm the effect of striatal DA-depletion on the morphology and protein levels of corticostriatal and thalamostriatal glutamatergic terminals and synapses, immunohistochemistry, immuno-electron microscope (EM), western blotting techniques were performed on Parkinson’s disease rat models in this study. The experimental results of this study showed that: (1) 6OHDA-induced DA-depletion resulted in a remarkable increase of Vesicular glutamate transporter 1 (VGlut1) + and Vesicular glutamate transporter 2 (VGlut2)+ terminal densities at both the light microscope (LM) and EM levels, and VGlut1+ and VGlut2+ terminal sizes were shown to be enlarged by immuno-EM; (2) Striatal DA-depletion resulted in a decrease in both the total and axospinous terminal fractions of VGlut1+ terminals, but the axodendritic terminal fraction was not significantly different from the control group. However, total, axospinous and axodendritic terminal fractions for VGlut2+ terminals declined significantly after striatal DA-depletion. (3) Western blotting data showed that striatal DA-depletion up-regulated the expression levels of the VGlut1 and VGlut2 proteins. These results suggest that 6OHDA-induced DA-depletion affects corticostriatal and thalamostriatal glutamatergic synaptic inputs, which are involved in the pathological process of striatal neuron injury induced by DA-depletion.

  相似文献   

3.
Abstract: Subchronic treatment with haloperidol increases the number of asymmetric glutamate synapses associated with a perforated postsynaptic density in the striatum. To characterize these synaptic changes further, the effects of subchronic (28 days) administration of an atypical antipsychotic, clozapine (30 mg/kg, s.c.), or a typical antipsychotic, haloperidol (0.5 mg/kg, s.c.), on the binding of [3H]MK-801 to the NMDA receptor-linked ion channel complex and on the in situ hybridization of riboprobes for NMDAR2A and 2B subunits and splice variants of the NMDAR1 subunit were examined in striatal preparations from rats. The density of striatal glutamate immunogold labeling associated with nerve terminals of all asymmetric synapses and the immunoreactivity of those asymmetric synapses associated with a perforated postsynaptic density were also examined by electron microscopy. Subchronic neuroleptic administration had no effect on [3H]MK-801 binding to striatal membrane preparations. Both drugs increased glutamate immunogold labeling in nerve terminals of all asymmetric synapses, but only haloperidol increased the density of glutamate immunoreactivity within nerve terminals of asymmetric synapses containing a perforated postsynaptic density. Whereas subchronic administration of clozapine, but not haloperidol, resulted in a significant increase in the hybridization of a riboprobe that labels all splice variants of the NMDAR1 subunit, both drugs significantly decreased the abundance of NMDAR1 subunit mRNA containing a 63-base insert. Neither drug altered mRNA for the 2A subunit, but clozapine significantly increased hybridization of a probe for the 2B subunit. The data suggest that some neuroleptic effects may be mediated by glutamatergic systems and that typical and atypical antipsychotics can have varying effects on the density of glutamate in presynaptic terminals and on the expression of specific NMDA receptor splice variant mRNAs. Alternatively, NMDAR1 subunit splice variants may differentially respond to interactions with glutamate.  相似文献   

4.
Chung EK  Chen LW  Chan YS  Yung KK 《Neuro-Signals》2006,15(5):238-248
Overactivity of the glutamatergic system is suggested to be closely related to the onset and pathogenesis of Parkinson's disease. Vesicular glutamate transporters (VGLUT1, T2 and T3) are a group of glutamate transporters in neurons that are responsible for transporting glutamate into synaptic vesicles and they are key elements for homeostasis of glutamate neurotransmission. The present study was aimed to investigate the expression of VGLUT1, T2 and T3 proteins after the onset of Parkinson's disease. A rat model of Parkinson's disease, the 6-hydroxydopamine-lesioned rat, was employed. Immunocytochemistry revealed that VGLUT1, T2 and T3 immunoreactivity was not modulated in the striatum of the lesioned rat. Western blotting analyses also showed that there was no change in the expression of T1, T2 and T3 proteins in the striatum. In contrast, no VGLUT1 protein was detected in the substantia nigra. After the lesion, levels of VGLUT2 immunoreactivity and protein were not modulated. Significant increase of VGLUT3 immunoreactivity was observed in the perikarya of GABAergic substantia nigra pars reticulata neurons (+14.7%) although VGLUT3 protein was not modulated in the nigral tissues. VGLUT3 in GABAergic neurons is suggested to play a role in GABA synthesis. The present results may therefore implicate that VGLUT1 and T2 are not modulated in the striatum and the substantia nigra of the 6-hydroxydopamine-lesioned rat and only VGLUT3 plays a role in pathogenesis of Parkinson's disease.  相似文献   

5.
6.
Incubation of rat striatal tissue in the presence of acetylcholine, carbachol, oxotremorine, or nicotine results in a significant decrease in the sodium-dependent high-affinity glutamate uptake (HAGU). The cholinergic inhibitory effect on glutamate transport is no more detectable in the presence of atropine, a cholinergic receptor antagonist. These data support the hypothesis that glutamatergic nerve ending activity in the striatum is modulated by cholinergic neurons. The effects would involve both muscarinic and nicotinic presynaptic receptors located on the corticostriatal glutamatergic terminals.  相似文献   

7.
Glutamate and GABA mediate most of the excitatory and inhibitory synaptic transmission; they are taken up and accumulated in synaptic vesicles by specific vesicular transporters named VGLUT1-3 and VGAT, respectively. Recent studies show that VGLUT2 and VGLUT3 are co-expressed with VGAT. Because of the relevance this information has for our understanding of synaptic physiology and plasticity, we investigated whether VGLUT1 and VGAT are co-expressed in rat cortical neurons. In cortical cultures and layer V cortical terminals we observed a population of terminals expressing VGLUT1 and VGAT. Post-embedding immunogold studies showed that VGLUT1+/VGAT+ terminals formed both symmetric and asymmetric synapses. Triple-labeling studies revealed GABAergic synapses expressing VGLUT1 and glutamatergic synapses expressing VGAT. Immunoisolation studies showed that anti-VGAT immunoisolated vesicles contained VGLUT1 and anti-VGLUT1 immunoisolated vesicles contained VGAT. Finally, vesicles containing VGAT resident in glutamatergic terminals undergo active recycling. In conclusion, we demonstrate that in neocortex VGLUT1 and VGAT are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, that VGLUT1 and VGAT are sorted to the same vesicles and that vesicles at synapses expressing the vesicular heterotransporter participate in the exo-endocytotic cycle.  相似文献   

8.
Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex.  相似文献   

9.
在中枢神经系统,谷氨酸转运体在谷氨酸一谷氨酰胺循环中发挥着重要作用。谷氨酸转运体有高亲和力转运体,即兴奋性氨基酸转运体(excitatory amino acid transporters,EAATs)和低亲和力转运体,即囊泡谷氨酸转运体(vesicular glutamate transporters,VGLUTs)两种类型。其中,VGLUTs的功能是特异地将突触囊泡外的谷氨酸转运进入突触囊泡内,它包括三个成员,分别是VGLUT1、VGLUT2和VGLUT3。一方面,VGLUT1和VGLUT2标记了所有的谷氨酸能神经元,是谷氦酸能神经元和它们轴突末端高度特异的标志;另一方面,VGLUT1标志着皮质一皮质投射,而VGLUT2则标志着丘脑一皮层投射,VGLUT3则位于抑制性突触末端。  相似文献   

10.
The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.  相似文献   

11.
Glutamate is the major excitatory neurotransmitter in the mammalian CNS. It is loaded into synaptic vesicles by a proton gradient-dependent uptake system and is released by exocytosis upon stimulation. Recently, two mammalian isoforms of a vesicular glutamate transporter, VGLUT1 and VGLUT2, have been identified, the expression of which enables quantal release of glutamate from glutamatergic neurons. Here, we report a novel isoform of a human vesicular glutamate transporter (hVGLUT3). The predicted amino acid sequence of hVGLUT3 shows 72% identity to both hVGLUT1 and hVGLUT2. hVGLUT3 functions as a vesicular glutamate transporter with similar properties to the other isoforms when it is heterologously expressed in a neuroendocrine cell line. Although mammalian VGLUT1 and VGLUT2 exhibit a complementary expression pattern covering all glutamatergic pathways in the CNS, expression of hVGLUT3 overlaps with them in some brain areas, suggesting molecular diversity that may account for physiological heterogeneity in glutamatergic synapses.  相似文献   

12.
In addition to cytosolic efflux, reversal of excitatory amino acid (EAA) transporters evokes glutamate exocytosis from the striatum in vivo. Both kappa-opioid and muscarinic receptor agonists suppress this calcium-dependent response. These data led to the hypothesis that the calcium-independent efflux of striatal glutamate evoked by transporter reversal may activate a transsynaptic feedback loop that promotes glutamate exocytosis from thalamo- and/or corticostriatal terminals in vivo and that this activation is inhibited by presynaptic kappa and muscarinic receptors. Corollaries to this hypothesis are the predictions that agonists for these putative presynaptic receptors will selectively inhibit the calcium-dependent component of glutamate released from striatal synaptosomes, whereas the calcium-independent efflux evoked by an EAA transporter blocker, L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC), will be insensitive to such receptor ligands. Here we report that a muscarinic agonist, oxotremorine (0.01-10 microM), and a kappa-opioid agonist, U-69593 (0.1-100 microM), suppressed the calcium-dependent release of glutamate that was evoked by exposing striatal synaptosomes to the potassium channel blocker 4-aminopyridine. The presynaptic inhibition produced by these ligands was concentration dependent, blocked by appropriate receptor antagonists, and not mimicked by the delta-opioid agonist [D-Pen2,5]-enkephalin. The finding that glutamate efflux evoked by L-trans-PDC from isolated striatal nerve endings was entirely calcium independent supports the notion that intact basal ganglia circuitry mediates the calcium-dependent effects of this agent on glutamate efflux in vivo. Furthermore, because muscarinic or kappa-opioid receptor activation inhibits calcium-dependent striatal glutamate release in vitro as it does in vivo, it is likely that both muscarinic and kappa receptors are inhibitory presynaptic heteroceptors expressed by striatal glutamatergic terminals.  相似文献   

13.
Adenosine and dopamine are two important modulators of glutamatergic neurotransmission in the striatum. However, conflicting reports exist about the role of adenosine and adenosine receptors in the modulation of striatal dopamine release. It has been previously suggested that adenosine A(1) receptors localized in glutamatergic nerve terminals indirectly modulate dopamine release, by their ability to modulate glutamate release. In the present study, using in vivo microdialysis, we provide evidence for the existence of a significant glutamate-independent tonic modulation of dopamine release in most of the analyzed striatal compartments. In the dorsal, but not in the ventral, part of the shell of the nucleus accumbens (NAc), blockade of A(1) receptors by local perfusion with the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine or by systemic administration of the non-selective adenosine antagonist caffeine induced a glutamate-dependent release of dopamine. On the contrary, A(1) receptor blockade induced a glutamate-independent dopamine release in the core of the NAc and the nucleus caudate-putamen. Furthermore, using immunocytochemical and functional studies in rat striatal synaptosomes, we demonstrate that a fraction of striatal dopaminergic terminals contains adenosine A(1) receptors, which directly inhibit dopamine release independently of glutamatergic transmission.  相似文献   

14.
Several studies have shown that L-aspartate (Asp) is present in synaptic vesicles and released exocytotically from presynaptic terminals, possibly by Ca2+-dependent corelease of Asp and L-glutamate (Glu). It has been demonstrated that both excitatory amino acids (EAAs) are released from the rat striatum as part of corticostriatal neurotransmission. The single or colocalized occurrence of Asp and Glu in specific synaptic boutons of the chicken medial striatum/nucl. accumbens has been demonstrated by our group using ultrastructural immunocytochemistry. However, evidence for the presence of EAAs in any specific striatal pathway was only circumstantial. Here, we report on the distribution of Asp and Glu in specific synaptic terminals of the amygdalostriatal pathway, both in rat and chicken brains, combining anterograde tracing with postembedding immunogold labeling of Asp or Glu. Immunoreactivity for Asp and Glu was observed in amygdalofugal terminals with asymmetrical synaptic junctions (morphologically representing excitatory synapses) in both species. The postsynaptic targets were either dendritic spines or small dendrites, whereas axosomatic or axo-axonic connections were not observed. Ultrastructurally, the synaptic terminals immunoreactive for Asp were indistinguishable from those immunoreactive for Glu. The findigs are consistent with an Asp?CGlu corelease mechanism, with a distinct synaptic contingent, evolutionarily conserved in the amygdalostriatal pathway.  相似文献   

15.
Glutamatergic terminals from rat midbrain were characterized by immunolocalization of synaptophysin and the vesicular glutamate transporters, either VGLUT1 or VGLUT2. Terminals containing these markers represent about 31% (VGLUT1) and 16% (VGLUT2) of the total synaptosomal population. VGLUT1-positive glutamatergic terminals responded to ATP or P1,P 5-di(adenosine-5') pentaphosphate (Ap5A) with an increase in the intrasynaptosomal calcium concentration as measured by a microfluorimetric technique in single synaptosomes. Roughly 20% of the VGLUT1-positive terminals responded to ATP, 13% to Ap5A and 11% to both agonists. Finally 56% of the terminals labeled with the anti-VGLUT1 antibody did not show any calcium increase in response to ATP or Ap5A. A similar response distribution was also observed in the VGLUT2-positive terminals. The Ca2+ responses induced by ATP and Ap5A in the glutamatergic terminals could be selectively inhibited by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 80 micro m) and P1,P 5-di(inosine-5') pentaphosphate (Ip5I, 100 nm), respectively. Both ATP and Ap5A, once assayed in the presence of extrasynaptosomal calcium, were able to induce a concentration-dependent glutamate release from synaptosomal populations, EC50 values being 21 micro m and 38 micro m for ATP and Ap5A, respectively. Specific inhibition of glutamate release was obtained with PPADS on the ATP effect and with Ip5I on the dinucleotide response, indicating that separate receptors mediate the secretory effects of both compounds.  相似文献   

16.
With the recent identification of the two isoforms of vesicular glutamate transporters VGLUT1 and VGLUT2 and of the presumed neuronal glutamine transporter SAT1 novel tools have been made available to unequivocally define the anatomy of glutamatergic pathways on the cellular and synaptic level. Using highly specific antisera and cRNA probes two distinct glutamatergic pathways expressing either VGLUT1 or VGLUT2 could be detected throughout the central nervous system. Areas where VGLUT1 predominated included the cerebral and cerebellar cortex and the hippocampus. VGLUT2 was mainly expressed in the thalamus, hypothalamus and brain stem. VGLUT1 and VGLUT2 synapses exhibited distinct region- and pathway-specific relationships with each other and with other classical transmitter and peptidergic systems. The glutamine transporter SAT1 was expressed in CNS neurons and in ependymal cells. Neuronal SAT1 expression comprised virtually all glutamatergic neurons but also specific subsets of cholinergic, GABAergic and aminergic neurons in the CNS. In addition to widespread expression of VGLUT1 and VGLUT2 in the CNS, peripheral tissues such as sensory neurons and pancreatic islet cells differentially expressed VGLUT isoforms and SAT1.
Our results suggest pathway-specific functional duality in the regulation of vesicular glutamate release at excitatory synapses and provide evidence for glutamine transport and metabolism in excitatory glutamatergic and diverse nonglutamatergic neurons as well.  相似文献   

17.
Central pattern generators (CPGs) are defined as neuronal circuits capable of producing a rhythmic and coordinated output without the influence of sensory input. The locomotor and respiratory neuronal circuits are two of the better-characterized CPGs, although much work remains to fully understand how these networks operate. Glutamatergic neurons are involved in most neuronal circuits of the nervous system and considerable efforts have been made to study glutamate receptors in nervous system signaling using a variety of approaches. Because of the complexity of glutamate-mediated signaling and the variety of receptors triggered by glutamate, it has been difficult to pinpoint the role of glutamatergic neurons in neuronal circuits. In addition, glutamate is an amino acid used by every cell, which has hampered identification of glutamatergic neurons. Glutamatergic excitatory neurotransmission is dependent on the release from glutamate-filled presynaptic vesicles loaded by three members of the solute carrier family, Slc17a6-8, which function as vesicular glutamate transporters (VGLUTs). Recent data describe that Vglut2 (Slc17a6) null mutant mice die immediately after birth due to a complete loss of the stable autonomous respiratory rhythm generated by the pre-B?tzinger complex. Surprisingly, we found that basal rhythmic locomotor activity is not affected in Vglut2 null mutant embryos. With this perspective, we discuss data regarding presence of VGLUT1, VGLUT2 and VGLUT3 positive neuronal populations in the spinal cord.  相似文献   

18.
Synapse malformation underlies numerous neurodevelopmental illnesses, including autism spectrum disorders. Here we identify the lipid raft protein flotillin‐1 as a promoter of glutamatergic synapse formation. We cultured neurons from the hippocampus, a brain region important for learning and memory, and examined them at two weeks in vitro, a time period rich with synapse formation. Double‐label immunocytochemistry of native flot‐1 with glutamatergic and GABAergic synapse markers showed that flot‐1 was preferentially colocalized with the glutamatergic presynaptic marker vesicular glutamate transporter 1 (VGLUT1), compared to the GABAergic presynaptic marker glutamic acid decarboxylase‐65 (GAD‐65). Triple‐label immunocytochemistry of native flot‐1, VGLUT1, and NR1, the obligatory subunit of NMDA receptors, indicates that Flot‐1 was preferentially localized to synaptic rather than extrasynaptic NR1. Furthermore, electrophysiological results using whole‐cell patch clamp showed that Flot‐1 increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not miniature inhibitory postsynaptic currents (mIPSCs), whereas amplitude and decay kinetics of either type of synaptic current was not affected. Corresponding immunocytochemical data confirmed that the number of glutamatergic synapses increased with flot‐1 overexpression. Overall, our anatomical and physiological results show that flot‐1 enhances the formation of glutamatergic synapses but not GABAergic synapses, suggesting that the role of flot‐1 in neurodevelopmental disorders should be explored. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 875–883, 2010  相似文献   

19.
A lack of methods for measuring the protein compositions of individual synapses in?situ has so far hindered the exploration and exploitation of synapse molecular diversity. Here, we describe the use of array tomography, a new high-resolution proteomic imaging method, to determine the composition of glutamate and GABA synapses in somatosensory cortex of Line-H-YFP Thy-1 transgenic mice. We find that virtually all synapses are recognized by antibodies to the presynaptic phosphoprotein synapsin I, while antibodies to 16 other synaptic proteins discriminate among 4 subtypes of glutamatergic synapses and GABAergic synapses. Cell-specific YFP expression in the YFP-H mouse line allows synapses to be assigned to specific presynaptic and postsynaptic partners and reveals that a subpopulation of spines on layer 5 pyramidal cells receives both VGluT1-subtype glutamatergic and GABAergic synaptic inputs. These results establish a means for the high-throughput acquisition of proteomic data from individual cortical synapses in?situ.  相似文献   

20.
Dopamine input to the striatum is required for voluntary motor movement, behavioral reinforcement, and responses to drugs of abuse. It is speculated that these functions are dependent on either excitatory or inhibitory modulation of corticostriatal synapses onto medium spiny neurons (MSNs). While dopamine modulates MSN excitability, a direct presynaptic effect on the corticostriatal input has not been clearly demonstrated. We combined optical monitoring of synaptic vesicle exocytosis from motor area corticostriatal afferents and electrochemical recordings of striatal dopamine release to directly measure effects of dopamine at the level of individual presynaptic terminals. Dopamine released by either electrical stimulation or amphetamine acted via D2 receptors to inhibit the activity of subsets of corticostriatal terminals. Optical and electrophysiological data suggest that heterosynaptic inhibition was enhanced by higher frequency stimulation and was selective for the least active terminals. Thus, dopamine, by filtering less active inputs, appears to reinforce specific sets of corticostriatal synaptic connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号