首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Chronological changes of chromosome aberration rates related to accumulated doses in chronically exposed humans and animals at a low-dose-rate have not been well studied. C3H female specific pathogen-free mice (8 weeks of age) were chronically irradiated. Chromosome aberration rate in mouse splenocytes after long-term exposure to low-dose-rate (LDR) gamma-rays was serially determined by conventional Giemsa method. Incidence of dicentrics and centric rings increased almost linearly up to 8000 mGy following irradiation for about 400 days at a LDR of 20 mGy/day. Clear dose-rate effects were observed in the chromosome aberration frequencies between dose rates of 20 mGy/day and 200 Gy/day. Furthermore, the frequencies of complex aberrations increased as accumulated doses increased in LDR irradiation. This trend was also observed for the incidences of micronuclei and trisomies of chromosomes 5, 13 and 18 in splenocytes, detected by micronucleus assay and metaphase fluorescence in situ hybridization (FISH) method, respectively. Incidences of 2-4 micronuclei and trisomy increased in mouse splenocytes after irradiation of 8000 mGy at a LDR of 20 mGy/day. These complex chromosome aberrations and numerical chromosome aberrations seem to be induced indirectly after radiation exposure and thus the results indicate that continuous gamma-ray irradiation for 400 days at LDR of 20 mGy/day induced chromosomal instability in mice. These results are important to evaluate the biological effects of long-term exposure to LDR radiation in humans.  相似文献   

2.
Following whole-body irradiation of ICR mice with various doses of fission neutrons or X-rays, the frequency of micronuclei (MNs) in peripheral blood reticulocytes was measured at 12 h intervals beginning immediately after irradiation and ending at 72 h after irradiation. The resulting time-course curve of MN frequency had a clear peak 36 h after irradiation, irrespective of the type of radiation applied and the dose used. The MN frequency, averaged as the unweighted mean over the experimental time course, showed a linear increase with increasing dose of either fission neutrons or X-rays. The linear response to X-rays supports reported conclusion that induction of MN formation in reticulocytes is a dose-rate independent phenomenon. The relative biological effectiveness (RBE) of fission neutrons to X-rays for MN induction was estimated to be 1.9 +/- 0.3. This value is considerably lower than the RBE value of 4.6 +/- 0.5 reported for the same fission neutrons for induction of lymphocyte apoptosis in the thymus of ICR mice that represents dose-rate independent, one-track event. Based on these results, we propose that MNs increased in reticulocytes after irradiation mostly represent acentric fragments caused by single chromosome breaks, and that some confounding factor is operating in erythroblasts for the formation of aberrations from non-rejoining DNA double-strand breaks more severely after high-LET radiation than after low-LET radiation.  相似文献   

3.
Studies on the induction and persistence of ethylene oxide (EO) induced chromosomal alterations in rat bone-marrow cells and splenocytes following in vivo exposure were carried out. Rats were exposed to ethylene oxide either chronically by inhalation (50-200ppm, 4 weeks, 5 days/week, 6h/day) or acutely by intraperitoneal injection (i.p.) at dose levels of 50-100ppm.Spontaneous- and induced-frequencies of micronuclei (MN), sister-chromatid exchanges (SCEs) and chromosomal aberrations were determined in rat bone-marrow cells, and in splenocytes following in vitro mitogen stimulation. Unstable chromosomal aberrations were studied in whole genome using standard Giemsa staining technique and fluorescence in situ hybridisation using probe for chromosome #2 was employed to detect chromosome translocations.Following chronic exposure, the cytogenetic analyses were carried out at days 5 and 21 in rat splenocytes, to study the induction and persistence of sister-chromatid exchanges. Following chronic exposure, ethylene oxide was effective in inducing SCEs, and markedly cells with high frequency SCEs were observed and they in-part persisted until day 21 post-exposure. However, no significant effect was observed in rat splenocytes for induction of MN and chromosomal aberrations. Following acute exposure, both SCEs and MN were increased significantly in rat bone-marrow cells as well as splenocytes.In conclusion, this study indicates that ethylene oxide at the concentrations employed by intraperitoneal injection or inhalation in adult rats is mutagenic and can induce both SCEs and MN.  相似文献   

4.
Chromosome damage induced by X-irradiation or bleomycin was measured using the cytokinesis-block micronucleus assay in the peripheral blood lymphocytes of 6 newborn, 8 young and 10 elderly individuals. An increase in the frequency of spontaneous micronuclei with age was observed. There was no difference in the X-irradiation-induced micronucleus frequency between the 3 groups. There was a significant increase with age in the number of micronuclei induced by bleomycin. Kinetochore-labelling studies revealed that the percentage of kinetochore-positive induced micronuclei was higher for bleomycin (36.2-43.3%) than for X-irradiation (17.1-19.7%). The age-related increase in frequency of spontaneous or bleomycin-induced micronuclei was due to increases in both kinetochore-positive and kinetochore-negative micronuclei. The frequency of kinetochore-positive or -negative micronuclei induced by X-irradiation was not different between the 3 age groups. These results suggest that bleomycin is more potent in inducing whole-chromosome loss than X-rays, and that lymphocytes from aged individuals are more sensitive to bleomycin in terms of both chromosome breakage and whole chromosome loss.  相似文献   

5.
When Go human lymphocytes are exposed either to gamma-rays or to d(50)-Be neutrons and then immediately incubated in presence of cytosine arabinoside, the frequency of chromosomal aberrations which is normally observed after radiation exposure only is sharply increased. This enhancement of the aberrations, particularly the dicentrics, is, however, less marked when cytosine arabinoside is administered at longer intervals of time after irradiation. For gamma-rays, the treatment with cytosine arabinoside has no effect on the dicentrics yield when given 5 h after irradiation, indicating that the repair is completed within the 5 h after irradiation and that the lesions are not anymore available to produce exchange aberrations. For d(50)-Be neutrons, the time of repair takes approximately 5 h after a dose of 2.0 Gy, whereas it appears to be shorter (3 h) after a dose of 0.5 Gy.  相似文献   

6.
Analysis of dose-response relationship was carried out for chromosome aberrations produced in human peripheral lymphocytes by fission neutrons at doses of 25, 50, 100 or 200 rad.Statistical treatment showed experimental data to be fitted by a regression curve described by the mathematical model Y = a+bD. A linear relation to dose characterized both one-break and two-break aberration yields. Numerical values of coefficients are reported for yields of dicentrics, chromosome fragments, minutes, aberrant cells, total number of aberrations, and total breakage.Based on chromosome fragments and aberrant cells, relative biological efficiency (RBE) value derived for fission neutrons relative to 180 kV X-rays for chromosome fragments was 2.53, and for aberrant cells it was 2.80.  相似文献   

7.
The protective effect of cysteine was studied in muntjac and human lymphocytes in vitro scoring chromosomal aberrations in harlequin stained first cycle metaphases, induced by X-irradiation at G0. Its protective efficiency was also studied against the radiomimetic clastogen, bleomycin, in muntjac cells. 30 μg and 1 mg/ml of cysteine were given prior to 2, 3, and 4 Gy, and 2 mg/ml prior to only 4 Gy. 30 μg cysteine protected only against deletions in 4 Gy-treated cells while 1 mg protected against deletions by all three doses of X-rays. However, rearrangements were not reduced significantly in any of these, probably due to their low frequency. But when cysteine was increased to 2 mg, both types of aberrations were reduced significantly. This shows that a sufficient number of aberrations and an optimum concentration of the protector are essential for eliciting the best protective effect. This conclusion is further supported by the results of 2 mg cysteine treatment in human lymphocytes which yielded higher frequencies of rearrangements with 2 and 3 Gy X-rays than 4 Gy in muntjac, but had a relatively lower frequency of deletions. Thus the most abundant categories of aberration, i.e., deletions in muntjac and exchanges in humans, were reduced significantly by 2 mg cysteine, associated with a prominent reduction in the frequency of aberrant metaphases. Therefore, the differential protection observed with a low concentration of the protector and an insufficient yield of aberrations induced only indicates protection provided to the most frequent type of aberration by a protector when present in lower concentration.

Cysteine pretreatment yielded weak protection against the effects of bleomycin, but posttreatment caused a mild potentiation of the clastogenic effect of BLM without altering the cell cycle kinetics. In this context, an action of cysteine as a reducing agent on BLM is suggested. Although cysteine alone caused severe retardation of the cell cycle, when given prior to X-irradiation, not only its delaying effect was not observed, but also it reduced the X-ray induced cell cycle delay. This might be due to the oxidation of cysteine by its radical scavenging action.  相似文献   


8.
Microtus males were exposed to different doses of 250 kV X-rays or fast fission neutrons of 1 MeV mean energy. Early (= round) spermatids were analyzed for the presence of extra sex chromosomes, diploidy and micronuclei at different time intervals corresponding with treated differentiating spermatogonia and spermatocytes. Induction of nondisjunction of sex chromosomes could not be detected. In contrast, induction of diploids by both types of radiation was statistically significant at all sampling times. Dose-effect relationships for most of the sampling times were linear and sometimes linear-quadratic concave upward or downward. There were pronounced stage-specific differences in sensitivity as reflected by differences in doubling doses that ranged from 4 to 22 cGy for X-rays and from 0.4 to 4 cGy for neutrons. Spermatocytes at pachytene were the most sensitive cells and proliferating spermatogonia the least sensitive ones. The relative biological effectiveness (RBE) of neutrons depended on the cell stage treated and fluctuated between 1.4 and 9.2. Evidence for radiation-induced chromosomal breakage events was obtained via detection of micronuclei. Induction of micronuclei by X-rays or neutrons was statistically significant at all spermatocyte stages tested. There was no effect in spermatogonia. With a few exceptions dose-effect relationships were linear. Differences in stage sensitivity were clearly present as evidenced by doubling dose which ranged from 5 to 29 cGy for X-rays and from 1 to 3 cGy for neutrons. RBE values varied from 5.2 to 12.7. Maximum sensitivity was detected in spermatocytes at diakinesis, MI and MII. Resting primary spermatocytes (G1 and S phase) were somewhat less sensitive and actively proliferating spermatogonia were the least sensitive cells. The pattern of stage sensitivity for induction of diploids was distinctly different from that for induction of chromosomal breakage.  相似文献   

9.
B C Das  T Sharma 《Mutation research》1983,110(1):111-139
Peripheral blood lymphocytes of 3 mammalian species, man, muntjac and cattle, which have various amounts of DNA and divergent karyotypes, were exposed to 100-400 rad of X-rays, and frequencies of dicentrics and other aberrations were analysed at first post-irradiation metaphases. During experiments, various preparative or physical and biological factors that could influence the yield of chromosome aberrations were taken into account. The frequency of dicentrics scored at first post-irradiation metaphases showed best fit to both linear and quadratic dose-response curves, y = a + bD and y = bD + cD2 with a high correlation coefficient of 0.98 (P less than 0.001). The frequency of dicentrics obtained at different post-irradiation fixation times did not show significant variation, indicating a homogeneous sensitivity of peripheral lymphocytes to X-irradiation. BrdU incorporation following X-irradiation showed no increase in the frequency of chromosome aberrations. The frequency of dicentrics in man, muntjac and cattle showed a close correlation with their DNA content, but no meaningful correlation was found between the yield of dicentrics and the chromosome arm number or the nuclear volume. The ratio of dicentric yields, 1.00:0.67:1.04 obtained in man, muntjac and cattle were comparable to the ratio of their DNA contents, 1.00: 0.65: 1.07. The base-line frequency of SCEs was similar in the 3 species and no significant variation in SCE frequency was noticed even after administration of 400 rad of X-rays.  相似文献   

10.
PHA-stimulated human lymphocytes in the G1 stage were irradiated with UV radiation and X-rays, and the cells were analyzed for chromosomal aberrations in the first mitotic division. The frequency of dicentric chromosomes after single X-irradiation in the G1 stage was about twice the yield in the G0 stage. No increase in the yield of dicentrics was observed after combined irradiation with UV and X-rays. This is contrary to the finding for G0 lymphocytes, where a 2-fold increase of chromosome aberrations was observed. UV irradiation of G1 lymphocytes induced chromatid-type aberrations whereas no significant yield of dicentric chromosomes was observed. This is in agreement with previous findings in Chinese hamster cells in the G1 stage [7]. Irradiation of G0 lymphocytes with UV radiation induce a low frequency of dicentric chromosomes. Thus, the present data indicate that the ratio between chromosome-type and chromatid-type aberrations is different in the G1 and G0 stages in human lymphocytes irradiated with UV radiation.  相似文献   

11.
The production of chromosome aberrations in vivo has been studied in lymphocytes from a patient undergoing a wholebody treatment with gamma-radiation up to a cumulative dose of 1.4 Gy. These results were compared with the observations performed on whole blood samples irradiated in vitro with doses from 0.05 up to 2 Gy of gamma-rays. The frequency of chromosome aberrations, particularly the dicentrics, was found to be similar in vivo and in vitro. The yield of dicentrics could be best related to the dose by using a linear-quadratic model in both cases, the ratio of the coefficients a/b being of 0.56 and 0.69 Gy, respectively in vivo and in vitro. These observations confirm that in vitro dose response curves may be used to evaluate accurately an in vivo absorbed dose.  相似文献   

12.
Peripheral blood lymphocytes from normal human volunteers or from Down syndrome patients were pre-treated with sodium butyrate (a compound which is known to induce structural modifications in the chromatin through hyperacetylation of nucleosomal core histones) and exposed to X-irradiation or treated with bleomycin in vitro in the G0 and/or G1 stage(s) of the cell cycle. The frequencies of chromosomal aberrations in the first mitosis after treatment were scored. The results show an enhancement in the yield of aberrations in the butyrate pre-treated groups. However, the absolute frequencies of chromosomal aberrations as well as the relative increases with butyrate pre-treatment varied between blood samples from different donors suggesting the existence of inter-individual variations. There is a parallelism between the effects of X-irradiation or of combined treatments in G0 and G1 stages and between effects observed in the X-ray and bleomycin series. The increase in the yields of chromosomal aberrations in butyrate-treated and X-irradiated lymphocytes (relative to those which received X-irradiation alone) is interpreted as a consequence of the inhibition of repair of DNA damage by butyrate.  相似文献   

13.
The Nijmegen Breakage Syndrome (NBS) is a new chromosomal instability disorder different from ataxia telangiectasia (AT) and other chromosome-breakage syndromes. Cells from an NBS patient appeared hypersensitive to X-irradiation. X-rays induced significantly more chromosomal damage in NBS lymphocytes and fibroblasts than in normal cells. The difference was most pronounced after irradiation in G2. Further, NBS fibroblasts were more readily killed by X-rays than normal fibroblasts. In addition, the DNA synthesis in NBS cells was more resistant to X-rays and bleomycin than that in normal cells. The reaction of NBS cells to X-rays and bleomycin was similar to that of cells from patients with ataxia telangiectasia. Our results indicate that NBS and AT, which also have similar chromosomal characteristics, must be closely related.  相似文献   

14.
Unstable chromosome aberrations induced by in vitro irradiation with zero plus seven low doses of 14.8 MeV D-T neutrons in the range 3.55-244 mGy have been analysed in human peripheral blood lymphocytes. In order to obtain the required large numbers of scored cells for such low doses, fourteen laboratories participated in the experiment. The dose responses for dicentrics, excess acentrics and total aberrations, fitted well to the Y = alpha D model. The alpha coefficient of yield for dicentrics, 1.60 +/- 0.07 X 10(-2) Gy-1, compares well with the values obtained in previous studies with D-T neutrons at somewhat higher doses. Results from a previous collaborative study using 250 kVp X-rays over a comparable dose range indicated the possible existence of a threshold below 50 mGy. In the present study there is no clear evidence for neutrons for such a threshold. However, the data were insufficient to permit the rejection of a possible threshold below approximately 10 mGy.  相似文献   

15.
The inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide (3AB) has been reported to have very different effects on X-ray-induced chromosome aberrations in G0 human lymphocytes. One group of investigators observed a 2-3-fold increase in the yield of rings, dicentrics and chromosome breaks after X-irradiation and 3AB treatment, whereas another group found that 3AB had no effect on X-ray-induced chromosome aberrations. To resolve this discrepancy, we repeated the experiments as described by both groups and found no effect of 3 mM or 5 mM 3AB on the frequency of chromosome aberrations induced by either 1 Gy or 2 Gy of X-rays. Furthermore, we found no effect of 3AB on X-ray-induced aberration yields in C-banded prematurely condensed chromosome preparations from unstimulated human lymphocytes. These results indicate that poly(ADP-ribose) polymerase is not involved in the repair of cytogenetic damage in G0 human lymphocytes.  相似文献   

16.
The clastogenic effect of irradiated human plasma   总被引:1,自引:0,他引:1  
Normal unirradiated human lymphocytes were cultured in medium containing 20 per cent homologous or autologous plasma collected from samples of blood exposed in vitro to various doses of X-irradiation. Metaphases were stained by the BrdU/FPG method. The yields of chromatid-type aberrations in cells at first mitosis (M1 cells) were similar for cultures containing plasma irradiated at 0, 0.05 or 0.25 Gy but were significantly increased at 0.5, 5.0 and 10.0 Gy. The response was dose dependent but the data were insufficient to propose a particular model of dose response. The absence of chromosome-type aberrations confirmed the suggestion that earlier workers' observations of dicentrics and rings were artefacts of long culture times. The level of chromosomal damage was unaffected by omitting folic acid from the medium. Irradiated plasma did not alter the frequency of sister chromatid exchange observed in M2 cells. The ratios of M1, M2 and M3 cells were markedly affected by the presence of irradiated plasma which caused a dose-dependent speeding up of the cell cycle.  相似文献   

17.
A N Jha  T Sharma 《Mutation research》1991,260(4):343-348
To estimate the level of radiation exposure of personnel handling diagnostic X-ray machines, the yield of chromosomal aberrations was analysed in peripheral blood lymphocyte cultures. These occupationally exposed individuals showed higher frequencies of dicentrics as well as acentrics than normal controls. Absorbed radiation doses calculated by extrapolating reference in vitro dose-response curve for dicentrics ranged between 0.13 and 0.17 Gy. This implies exposure beyond the permissible limit of 0.05 Gy/year for the whole body. However, no obvious trend of increased aberrations as a function of either duration of employment or age was noticed. The increase in the aberration yields in this personnel underscores the need of adopting measures to avoid or minimise such overexposure.  相似文献   

18.
The extent of cell-cycle delay and the frequency of aberrant metaphases induced by bleomycin (BLM) and X-rays have been compared at doses which produce similar frequencies of chromosome aberrations by the 2 clastogenic agents (BLM, 40 micrograms/ml and X-rays, 2 Gy) in muntjac lymphocytes. The frequency of aberrant metaphases was low in BLM-treated cells; however, the number of aberrations per metaphase was higher than in cells exposed to X-rays. Thus in contrast to their uniform sensitivity to X-rays, the lymphocytes showed differential sensitivity to BLM. This might be due to differences among the cells in their uptake of BLM and/or its action on the nuclear membrane-DNA complex. In spite of the total number of chromosome aberrations being similar to that induced by X-rays, BLM did not induce a significant delay in cell-cycle progression as observed in the case of X-rays. A possible explanation could be that the DNA damages being limited to fewer cells than in the case of X-irradiation, the BLM-treated cultures had more normal cells allowing faster progression and/or unlike X-rays BLM may not be causing other cellular damages in addition to DNA breaks.  相似文献   

19.
Human lymphocytes were irradiated in vitro during Go stage by graded doses of thermal neutrons and neutrons having an average energy of 0.04; 0.09; 0.35; 0.85 and 14,7 MeV as well as by 60Co gamma rays, and RBE of neutrons relative to gamma-rays was calculated for the frequency of total and different types of aberrations. It was found that the RBE has the most value at the low doses and decreases when the exposition dose increases. 0.35 MeV neutrons have the maximum RBE in comparison with neutrons having other energies. When comparing the RBE values calculated for different types of chromosome aberrations, it was found out that dicentrics and dicentrics plus centric rings had more RBE than acentric aberrations (pair fragments and minutes).  相似文献   

20.
S Kürten  G Obe 《Mutation research》1975,27(2):285-294
The Chinese hamster bone marrow was used as a test system in vivo to analyse the chromosome-danaging effect of bleomycin. Both chromosome and chromatid aberrations were found. Mitoses with aberrations (Ma) show a linear dose-effect relationship after a recovery time of 24 h, the same hold true for cells with micronuclei (Cm) and for mitoses with premature chromosome condensation (PCC). The dose-effect relationships for Ma, Cm and PCC run parallel to each other with Ma at the highest and PCC at the lowest level (Ma greater than Cm greater than PCC). The time-effect relationships for Ma, Cm and PCC show that after 12 h recovery time there are no PCCs but the highest frequencies of Ma and Cm indicating that most cells are in their first post-treatment mitoses or Gi-phases at this fixation time. In addition to the frequency determinations autoradiographic analysis were performed to clarigy the nature of the PCCs. The results are interpreted as follows: bleomycin induces chromosomal aberrations that in turn give rise to micronuclei by means of lagging chromatin, main and micronuclei eventually become asynchronous in their cell cycles and mitosing main nuclei induce PCC in the micronuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号