首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gynoecium diversity and systematics of the paleoherbs   总被引:2,自引:0,他引:2  
Gynoecium and ovule structure was compared in representatives of all families of the paleoherbs, including Nymphaeales (Cabombaceae, Nymphaeaceae), Piperales (Saururaceae, Piperaceae), Aristolochiales (Lactoridaceae, Aristolochiaceae), Rafflesiales (Hydnoraceae, Rafflesiaceae) and, in addition, Ceratophyllaceae and Nelumbonaceae, both of which were earlier included in Nymphaeales, but then segregated and with an unestablished position. In all representatives studied, the carpels are closed at anthesis. Carpel closure is attained in three different ways: (1) postgenital fusion of inner surfaces (Piperales, Aristolochiales); (2) occlusion by secretion or mutual appression of inner surfaces without postgenital fusion (Cabombaceae, Ceratophyllaceae, Nelumbonaceae (?) or (3) strong secretion combined with postgenital fusion at the periphery of the carpel (Nymphaeaceae). In Cytinus (Rafflesiaceae), after an earlier developmental stage with apparent postgenital fusion there is strong internal secretion (within the cell walls). Stigma shape tends to be double-crested in the basal taxa of each order: Cabombaceae (Brasenia), Saururaceae, and Lactoridaceae. In some Aristolochiaceae and Cytinus (Rafflesiaceae) they have two lobes in the transverse symmetry plane (i. e. at right angles to the median plane) or, if the carpels are united, the stigmatic lobes are commissural, accordingly. Stigmas are unicellular papillate and secretory in most taxa, but the papillae are uniseriate-pluricellular in some (not basal) Nymphaeaceae, Asaroideae (Aristolochiaceae) and Cytinus (Rafflesiaceae). Ceratophyllaceae have smooth stigmas. Intrusive oil cells in the carpel epidermis were found in Piperales and Aristolochiaceae. Mature ovules vary in length between 0. 2 mm and 2. 5 mm. Mature nucelli vary in breadth between 0. 03 mm and 1. 6 mm. These differences are larger than in the other major magnoliid groups. The outer integument is fully annular (not semiannular) in all taxa with orthotropous ovules (all Piperales and Barclaya of Nymphaeaceae) and also in some with anatropous ovules (some Nymphaeaceae, some Aristolochiaceae). The integuments are variously lobed or unlobed; both integuments tend to exhibit the same behaviour within a family, either both lobed or both unlobed. The results strongly support three pairs of families in sister group relationships, as suggested by studies based on other characters: Cabombaceae-Nymphaeaceae, Saururaceae-Piperaceae, and Lactoridaceae-Aristolochiaceae, and Hydnoraceae-Rafflesiaceae to some extent. Piperales and Aristolochiales are closer to each other than either is to Nymphaeales. Nelumbonaceae is isolated, as is Ceratophyllaceae, but the status of the latter is more difficult to interpret owing to apparent reduction in morphological, anatomical and histological traits.  相似文献   

2.
The ovules ofCocculus hirsutus are anatropous, bitegmic and, crassinucellate. The fruit is drupaceous, black purple, and laterally compressed and has a pericarp demarcated into exocarp and endocarp. The seeds are curved around the basal bodies. Testa and tegmen cells are thin-walled and unspecialized. In the ripe seed the inner epidermis of the tegmen persists, whereas the entire testa and the outer layer of the tegmen degenerate. Relationships of theMenispermaceae toRanunculaceae, Berberidaceae, andLardizabalaceae are supported.  相似文献   

3.
Utilization of molecular phylogenetic information over the past decade has resulted in clarification of the position of most angiosperms. In contrast, the position of the holoparasitic family Hydnoraceae has remained controversial. To address the question of phylogenetic position of Hydnoraceae among angiosperms, nuclear SSU and LSU rDNA and mitochondrial atp1 and matR sequences were obtained for Hydnora and Prosopanche. These sequences were used in combined analyses that included the above four genes as well as chloroplast rbcL and atpB (these plastid genes are missing in Hydnoraceae and were hence coded as missing). Three data sets were analyzed using maximum parsimony: (1) three genes with 461 taxa; (2) five genes with 77 taxa; and (3) six genes with 38 taxa. Analyses of separate and combined data partitions support the monophyly of Hydnoraceae and the association of that clade with Aristolochiaceae sensu lato (s.l.) (including Lactoridaceae). The latter clade is sister to Piperaceae and Saururaceae. Despite over 11 kilobases (kb) of sequence data, relationships within Aristolochiaceae s.l. remain unresolved, thus it cannot yet be determined whether Aristolochiaceae, Hydnoraceae, and Lactoridaceae should be classified as distinct families. In contrast to most traditional classifications, molecular phylogenetic analyses do not suggest a close relationship between Hydnoraceae and Rafflesiaceae. A number of morphological features is shared by Hydnoraceae and Aristolochiaceae; however, a more resolved phylogeny is required to determine whether these represent synapomorphies or independent acquisitions.  相似文献   

4.
Embryological characters of Siparunaceae, which are poorly understood, were studied on the basis of two constituent genera, an African Glossocalyx and a South American Siparuna, to better understand their evolution within Laurales. These two genera have many embryological characteristics in common with the other lauralean families. Noticeably, they share the multi-celled ovule archesporium (uncertain in Glossocalyx) as a synapomorphy with all the other lauralean families except Lauraceae, the anthers dehisced by valves as a synspomorphy with all the other lauralean families except Calycanthaceae and Monimiaceae, and the bisporangiate anther as a synapomorphy with Gomortegaceae and Atherospermataceae. Siparunaceae are, however, distinct from all other laularean families in having unitegmic ovules that were derived from bitegmic ovules, probably due to an elimination of the outer integument. Likewise, the lack of the testa (i.e., developed outer integument), the "endotegmic" seed coat, and the perichalazal seed at maturity are also characteristics of Siparunaceae. Within the family, Siparuna differs from Glossocalyx in having plural tetrads of megaspores and plural, starchy-rich, one-nucleate, tubular embryo sacs (autapomorphies). On the other hand, Glossocalyx is characterized by having bilaterally flattened seeds (autapomorphy). Although functional aspects of those autapomorphies are uncertain, both Glossocalyx and Siparuna show evolution in different embryological characters.  相似文献   

5.
抱茎独行菜(Lepidium perfoliatum L.)为十字花科具典型粘液繁殖体植物,为探究该植物中种皮粘液质基因(MUCILAGE-MODIFIED4,MUM4,该基因在拟南芥中编码NDP-L-鼠李糖合成酶)的功能,通过生物信息学分析设计引物克隆得到抱茎独行菜MUM4基因,命名为LpMUM4。同源比对分析结果表明,LpMUM4与拟南芥AtMUM4基因具有很高的一致性。qRT-PCR结果表明,该基因在抱茎独行菜各组织中均有表达,在角果和根中的表达量最高,且其表达量随角果的发育表现出渐强的趋势。免疫组织化学定位分析表明,LpMUM4基因于角果发育的早期阶段在内珠被和外珠被都有表达,而在外珠被的表皮和亚表皮中表达量更高,至角果发育的最后阶段,其表达集中于表皮和亚表皮层,这可能与抱茎独行菜的外珠被发育成种皮及粘液质的生成有关。将LpMUM4基因转化拟南芥,该基因的过表达对位于粘液质合成途径中的上游基因AtTTG1具有显著的抑制作用。表型比对观察显示,转基因拟南芥与其野生型植株形态无显著差异,这可能是因为抱茎独行菜种皮的发育和粘液质的形成是一个多基因调控的复杂过程,某一基因的过表达或许不会引起明显的表型变化。  相似文献   

6.
Ovular development and morphology in some magnoliaceae species   总被引:1,自引:0,他引:1  
Floral phenology and ovular development ofLiriodendron tulipifera are described. The ovule primordia are initiated in December, followed by prominent development in March, and the ovules are mature in May. The inner integument is formed as an annular rim on the incurving ovule primordia, but the outer integument develops as a semi-annular rim interrupted on the concave side of the funicle. Later, an outgrowth, which is interpreted here as an obturator, arises on the concave side of the funicle. The funicular outgrowth arises far from the inner integument, while the outer integument is close to the inner. The outer integument and the funicular outgrowth together form an envelope complex. Later the outer integument produces two distal lobes, which disappear at maturity. Mature ovules of the threeMagnolia species examined have similar lobes. It is suggested that the hood-shaped outer integument is primitive in angiosperms.  相似文献   

7.
The phylogenetically ambivalent monotypic genus Lactoris presents sympodial (determinate) branching, as a terminal flower is present on each main branch. The synflorescence is thyrsoid. Partial inflorescences are rhipidia with up to three flowers. The ochrealike stipule is formed by the fusion of two lateral stipules, which forms an adaxial ligule-like structure and a two-flanked leaf sheath that encircles the parental axis. The leaf sheath elongates with the growth of the preceding internode. Although sympodial growth and a sheathing leaf base are present in all Piperales (Aristolochiaceae, Lactoridaceae, Piperaceae, and Saururaceae), the presence of stipules is confined to Lactoris, Saururaceae, and some Piperaceae. These characters are consistent with the placement of Lactoris within Piperales, although its phylogenetic position within the order remains equivocal, except for the possible sister group relationship suggested by the presence of cymose inflorescences in both Lactoris and Aristolochiaceae.  相似文献   

8.
Mc Gahan , Merritt W. (United Fruit Co., Norwood, Mass.) Studies on the seed of banana. I. Anatomy of the seed and embryo of Musa balbisiana. Amer. Jour. Bot. 48(3): 230–238. Illus. 1961.—The seed coat of Musa balbisiana Colla consists of a relatively thick outer integument and a 2–cell-layered inner integument. The entire seed coat is sclerified, but routine tests for lignin are negative. Within the outer integument there is a zone of unusual sclereids tentatively termed “multiluminate.” Between the inner integument and the remnants of the nucellus is a cuticle 10–12 μ thick. The micropylar plug and collar are typical of the genus. The chalazal mass is an annular region of gelatinous cells. The mature embryo is comprised of a massive cotyledon, an epicotyl with 1 leaf primordium, a primary root primordium, and several adventitious root primordia. Procambium is well developed, but no mature vascular elements are present in the embryo.  相似文献   

9.
The tribeDrypeteae, whose traditional assignment inPhyllanthoideae ofEuphorbiaceae is now doubtful, is studied embryologically on the basis of a literature survey and examination of six additional species in two of the four constituent genera.Drypeteae are characterized by having several embryological features that are unknown in otherPhyllanthoideae, such as a two- or three-celled ovule archesporium; a thin, two cell-layered parietal layer in the nucellus; no nucellar beak or cap; an early disintegrating nucellar tissue; thick, multiplicative, inner and outer integuments; an endothelium; a few discrete vascular bundles in the outer integument; and a fibrous exotegmen (or its derived state). EmbryologicallyDrypeteae do not fit within thePhyllanthoideae and, as available nucleotide sequence data from therbcL gene suggest, are rather placed nearErythroxylaceae, Rhizophoraceae, Chrysobalanaceae, andLinaceae. Drypeteae share with those families a combination of the fibrous exotegmen, the endothelium, and the thick, multiplicative inner integument.  相似文献   

10.
The anther wall layers ofCypripedium cordigerum are six to eight. The glandular tapetum is 2- or 3-layered and its cells are uninucleate. Simultaneous cytokinesis results in decussate, isobilateral and tetrahedral pollen tetrads. Ripe pollen grains are 2-celled. The mature ovules are anatropous, bitegmic and tenuinucellate. Both the integuments are dermal in origin and 2-layered. The inner integument alone forms the micropyle. The female gametophyte is 6-nucleate and bisporic. The reduction of nuclei is due to the strike phenomenon. Double fertilization occurs. The primary endosperm nucleus divides to form two free endosperm nuclei. The mature embryo is undifferentiated. The cells ca, m and n contribute to the embryo. The suspensor is single-celled. The seed coat is formed entirely by the outer layer of the outer integument. There are three sterile and three fertile valves in the ovary. In the prefertilization stages these valves consist of parenchymatous cells with starch and raphides. After fertilization, the sterile valves develop sclerotic cells whereas the fertile valves remain parenchymatous. The pericarp structure and embryological features support the retention of tribeCypripedieae within theOrchidaceae.  相似文献   

11.
The development of the floral bud, especially the ovule and seed coat, of Sinomanglietia glauca was observed. Floral buds were covered by eight to nine hypsophyll pieces. The hypsophyll nearest the tepal was closed completely and characterized by two arrays of densely stained cells with dense cytoplasm, which split longitudinally at flowering. The perianth consisted of 16 tepals arranged in three whorls. The gynoecium was composed of numerous apocarpous carpels; the ovule was anatropous with two integuments. Embryogenesis was of the Polygonum type, and the endosperm was nuclear. The inner integument degenerated during seed development. The seed of S. glauca had an endotestal seed coat comprised of a sclerotic layer derived from the inner adaxial epidermis of the outer integument and a sarcotesta derived mainly from the middle cells between the inner and outer epidermis of the outer integument. The embryo developed normally, so embryogenesis is not the cause of difficult regeneration.  相似文献   

12.
The mature seeds ofHampea nutricia are glabrous, ovoid, arillate and dark tan in colour. Longitudinal streaks on the seed surface correspond to the underlying integumentary vascular strands. Testa and tegmen are derived from the outer and inner integuments, respectively. The outer epidermis of the tegmen forms a palisade-like macrosclereid layer, the inner epidermis a fringe layer. The endosperm is single-layered and also fills the space between the two cotyledons. The embryo is nearly straight, gland-dotted; it has asymmetrical and folded cotyledons, and gossypol ducts. Systematic position ofHampea is discussed and its placement inMalvaceae is supported.  相似文献   

13.
Anther and ovule development of the theaceous Ternstroemioideae is reported for the first time on the basis of eight specles of three generaAdinandra, Cleyera andEurya. Anthers of these three genera are similar and can be characterized by the following traits: tapetum of glandular type, anther dehiscing latrorse-introrse, both connective and anther epidermis heavily tanniniferous, and connective and even anther wall layers having abundant druses. Their ovules are also very similar in being bitegmic and tenuinucellate, and in having a micropyle formed by the inner integument only, three cell-layered integuments, a raphe bundle terminating at chalaza, usually amphitropous or less often campylotropous ovule, embryo sac formation of Polygonum type, ephemeral antipodal cells, and tanniniferous ovule epidermis. Such ovules are readily distinguishable from those of Camellioideae and all other families. It is suggested that the three genera studied are closely related, and that the degree of embryological specialization is highest inAdinandra and lowest inEurya. On the basis of the significant embryological discrepacies, the Ternstroemioideae seem to have diverged rather distantly from the other core-subfamily Camellioideae of the Theaceae.  相似文献   

14.
Xyridaceae belongs to the xyrid clade of Poales, but the phylogenetic position of the xyrid families is only weakly supported. Xyridaceae is divided into two subfamilies and five genera, the relationships of which remain unclear. The development of the ovule, fruit and seed of Abolboda spp. was studied to identify characteristics of taxonomic and phylogenetic value. All of the studied species share anatropous, tenuinucellate and bitegmic ovules with a micropyle formed by the inner and outer integuments, megagametophyte development of the Polygonum type, seeds with a tanniferous hypostase, a helobial and starchy endosperm and an undifferentiated embryo, seed coat derived from both integuments with a tanniferous tegmen and a micropylar operculum, and fruits with a parenchymatous endocarp and mesocarp and a sclerenchymatous exocarp. Most of the ovule and seed characteristics described for Abolboda are also present in Xyris and may represent a pattern for the family. Abolboda is distinguished by the ovule type, endosperm formation and the number of layers in the seed coat, in agreement with its classification in Abolbodoideae. The following characteristics link Xyridaceae to Eriocaulaceae and Mayacaceae, supporting the xyrid clade: tenuinucellate, bitegmic ovules; seeds with a tanniferous hypostase, a starchy endosperm and an undifferentiated embryo; and a seed coat with a tanniferous tegmen. A micropylar operculum in the seeds of Abolboda is described for the first time here and may represent a synapomorphy for the xyrids. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 144–154.  相似文献   

15.
Drimys winteri (Winteraceae) and 11 species ofAnnonaceae, namelyAnnona montana, Artabotrys hexapetalus, Bocagea sp.,Papualthia sp.,Polyalthia nitidissima, Tetrameranthus umbellatus, T. duckei, Uvaria sp.,Xylopia malayana, X. aromatica, andX. emarginata, were investigated embryologically with special reference to development of ovule and embryo sac. The ovules are anatropous, crassinucellate and in most taxa bitegmic. The inner integument is of epidermal origin. TheAnnonaceae investigated have a multi-layered, later vascularized outer integument with most probably subepidermal initiation. In contrast,Drimys winteri has a three-layered, non-vascularized outer integument of epidermal origin. The annonaceous genusTetrameranthus (T. umbellatus andT. duckei) possesses a middle integument between the inner and the outer one, stated here for the first time in a neotropic representative ofAnnonaceae. Within the angiosperms this feature occurs inAnnonaceae only. The embryological characters are rather homogeneous. Differences between the species investigated are found in, e.g. the number of cell layers in the inner integument, which is commonly two inAnnonaceae as compared to three inDrimys winteri, the presence or absence of a hypostase, the number of layers in the nucellar epidermis, great differences in size of ovules, and the species-specific pattern of tannin deposition in the ovules. In the species so far investigated the embryo sacs develop according to thePolygonum-type. InXylopia malayana andBocagea sp. in addition the carpels were investigated. They are conduplicate. InXylopia malayana the free carpels are united by an extragynoecial compitum, inBocagea sp. each stigma produces its isolated mucilage cap. The results obtained from the investigated taxa are discussed and compared with published data on embryology and gynoecium structure in other annonaceous and winteraceous taxa.  相似文献   

16.
Summary Fertilized ovules from sugar beet, Beta vulgaris L., of different intra- and interspecific crosses have been grown under in situ and in vitro conditions and investigated by light microscopy. Selected anatomical parameters were observed and entered in a computer program for statistical treatment. After a few days in culture the cells of the inner integument epidermis develop reticulate wall thickenings and their content of tannins decrease. Likewise, the starch content in the outer integument decreases and no real seed coat is formed. The funiculus tissue increases its metabolic activity, i.e., abundant accumulation of protein and starch. Callus or callus-like proliferations develop in the nucellus and the suspensor, but only rarely in the embryo or endosperm. However, the embryo may show an irregular morphology. Very rapid metabolism of starch in the suspensor may be related to the ability of the embryo to survive the first days in culture. Generally, the cellular responses, most significant in the maternal sporophytic tissue and the suspensor rather than in the embryo and endosperm, can be explained as structural adaptations to alternative pathways of nutrient supply.  相似文献   

17.
The embryology ofStegnosperma halimifolium andS. watsonii has been studied in detail. The tapetum is of the secretory type and its cells become multinucleate. Simultaneous cytokinesis in the pollen mother cells follows meiosis. The ripe pollen grains are 3-celled. The ovule is crassinucellate, bitegmic and amphitropous, with the micropyle formed by the inner integument alone. The female archesporium is one celled, and the parietal tissue 3–5 layered. The embryo sac development conforms to thePolygonum type. A central strand, 6 or 7 cells thick, differentiates inside the nucellus and extends from the base of the embryo sac to the chalazal region. The endosperm is nuclear. The embryogeny conforms to the Caryophyllad type. The seed coat is formed by the outer epidermis of the outer integument and the inner epidermis of the inner integument. Based on this evidence and other data, the status of the genus as an independent family,Stegnospermataceae (Stegnospermaceae) is confirmed. Apparently, it forms a connecting link betweenPhytolaccaceae andCaryophyllaceae.  相似文献   

18.
Yamaki S  Satoh H  Nagato Y 《Planta》2005,222(3):408-417
The embryo position in a seed is stable in most plant species, indicating the existence of a strict regulatory mechanism that specifies the embryo position in the seed. To elucidate this mechanism, we analyzed the gypsy embryo (gym) mutant of rice, in which the position of the mature embryo in the seed is altered at a low frequency. Analyses of early embryogenesis and ovule development showed that the ectopic embryo was derived from an ill-positioned egg cell, which resulted from the incomplete curvature of the ovule. Although the development of both the inner and outer integuments was impaired, the ovule curvature was associated closely with the extent of inner integument growth. Therefore, inner integument development controls ovule curvature in rice. The expression patterns of OSH1 and OsMADS13 indicated that, in gym, a small number of indeterminate cells are maintained on the style side of the ovule and then in the integument primordium at a low frequency. The prolonged survival of these indeterminate cells disturbs normal integument development. The gym fon2 double mutant suggests that GYM and FON2 are involved redundantly in floral meristem determinacy. Possible functions of the GYM gene and the ovule developmental mechanism are discussed.  相似文献   

19.
Abstract: The embryology and seed structure of Paepalanthus sect. Actinocephalus species were studied. The embryological and structural seed characters fit well with those of the other commelinaceous families. Within the Commelinales sensu Dahlgren, Eriocaulaceae and Xyridaceae represent two embryologically close families. In Paepalanthus sect. Actinocephalus the ovule is orthotropus, bitegmic, and tenuicellate with a micropyle formed by the inner integument. The seeds are endotestal. The outer cell layer of the testa and the outer periclinal wall of the endotesta disintegrate during development. The endotegmen is tanniniferous. The outer layer of the tegmen becomes compressed and is no longer recognizable in the mature seed. The seeds are operculate.  相似文献   

20.
Summary We investigated seed morphology in 34 species of the genus Lysimachia and in 14 species and two subspecies of six additional genera (Anagallis, Ardisiandra, Asterolinon, Glaux, Pelletiera, Trientalis), which have been shown to be closely related to, or are placed within Lysimachia in previous molecular studies. We studied seed shape, seed coat structure, and seed coat surface patterns. Three major types of seed shape were identified: (1) sectoroid, (2) polyhedral, and (3) coarsely rugose with concave hilar area. In addition, seeds may be keeled or winged. The outer layer of the seed coat is either sponge-like and adhering only loosely to the inner seed coat or it is thin and tightly adhering to the underlying tissue. Seed surface patterns can be divided into six main types: (1) reticulate, (2) tuberculate, (3) vesiculose, (4) colliculate, (5) undulate, or (6) poroid-alveolate. Seed surface patterns are mostly congruent with molecular phylogenetic relationships. A reticulate surface pattern is diagnostic of, e.g. Lysimachia subgenera Palladia and Hawaiian Lysimachiopsis. Mapping seed characters onto a recent phylogenetic tree, reveals that they provide potentially synapomorphic character states for various subclades of Lysimachia. Salient examples include a rugose seed shape, which turns out to be synapomorphic for the clade comprising the genus Pelletiera plus Asterolinon linum-stellatum and a sponge-like outer seed coat layer, which characterizes a clade with Lysimachia vulgaris, L. thyrsiflora, and L. terrestris, with an analogue that apparently evolved in parallel in Trientalis europaea. We also discuss possible habitat factors that may have favored the independent evolution of particular seed types such as winged seeds in various lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号