首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The pea late nodulin gene PsNOD6 has been cloned and sequenced. PsNOD6 is homologous to the pea early nodulin genes PsNOD3 and PsENOD14. In situ hybridization experiments showed that, like the PsENOD3 and PsENOD14 genes, the PsNOD6 gene is only expressed in the infected cell type. The PsNOD6 gene is first expressed at the transition of the pre-fixation zone II into the interzone II–III (the amyloplast-rich zone preceding the fixation zone III), whereas the early nodulin genes PsENOD3 and PsENOD14 are already induced in the pre-fixation zone II. Thus these nodulin genes encoding homologous proteins are induced at consecutive stages of nodule development.The expression of the late nodulin genes encoding leghaemoglobin precedes the expression of the late nodulin gene PsNOD6. Therefore these late nodulin genes have to be regulated by different mechanisms despite the fact they are expressed in the same cell type. This conclusion is consistent with the fact that PsNOD6 lacks one of the conserved regions occurring in the promoters of all other late nodulin genes studied.  相似文献   

4.
5.
6.
Cell cycle progression in eukaryotes is controlled by complexes of p34 protein kinases and cyclins. For the first time in plants, we have established the sequence of four yellow lupine mitotic cyclin B1 genes. Their coding regions and expression pattern were also characterised recently. Structure of all the four lupine genes is similar: they consist of nine exons and eight introns, analogously located, except Luplu;CycB1;3 lacking 7th intron. Analysis of 5'-regulatory sequences of two of them showed that both comprise M-specific activators (MSA), common to plant genes induced in late G2 and early M. Putative repressor binding sites CDE/CHR found in animal G2-specific promoters can also be detected in lupine genes. Controlling region of Luplu;CycB1;4 gene that is highly activated by IAA, contains up to 7 auxin response elements, while insensible to IAA Luplu;CycB1;4 gene have no such motifs. Further studies should be undertaken to determine precisely the functions of putative regulatory elements in the expression of lupine mitotic cyclins.  相似文献   

7.
Late embryogenesis abundant (lea) genes are a large and diverse group of genes highly expressed during late stages of seed development. Five major groups of LEA proteins have been described. Two Em genes (group I lea genes) are present in the genome of Arabidopsis thaliana L., AtEm1 and AtEm6. Both genes encode for very similar proteins which differ basically in the number of repetitions of a highly hydrophilic amino acid motif. The spatial patterns of expression of the two Arabidopsis Em genes have been studied using in situ hybridization and transgenic plants transformed with the promoters of the genes fused to the beta-glucuronidase reporter gene (uidA). In the embryo, AtEm1 is preferentially expressed in the pro-vascular tissues and in meristems. In contrast, AtEm6 is expressed throughout the embryo. The activity of both promoters disappears rapidly after germination, but is ABA-inducible in roots of young seedlings, although in different cells: the AtEm1 promoter is active in the internal tissues (vasculature and pericycle) whereas the AtEm6 promoter is active in the external tissues (cortex, epidermis and root hairs). The AtEm1 promoter, but not AtEm6, is also active in mature pollen grains and collapsed nectaries of young siliques. These data indicate that the two Em proteins could carry out at least slightly different functions and that the expression of AtEm1 and AtEm6 is controlled at, at least, three different levels: temporal, spatial and hormonal (ABA).  相似文献   

8.
We show that the products of SPO1 genes 44, 50, and 51 are required for the normal transition from early to middle gene expression during infection of Bacillus subtilis by bacteriophage SPO1; that they are also required for control of the shutoff of host DNA, RNA, and protein synthesis; and that their effects on host shutoff could be accounted for by their effects on the regulation of gene expression. These three gene products had four distinguishable effects in regulating SPO1 gene expression: (i) gp44-50-51 acted to restrain expression of all SPO1 genes tested, (ii) gp44 and/or gp50-51 caused additional specific repression of immediate-early genes, (iii) gp44 and/or gp50-51 stimulated expression of middle genes, and (iv) gp44 and/or gp50-51 stimulated expression of some delayed-early genes. Shutoff of immediate-early gene expression also required the activity of gp28, the middle-gene-specific sigma factor. Shutoff of host RNA and protein synthesis was accelerated by either the 44- single mutant or the 50(-)51(-) double mutant and more so by the 44(-)50(-)51(-) triple mutant. Shutoff of host DNA synthesis was accelerated by the mutants early in infection but delayed by the 44(-)50(-)51(-) triple mutant at later times. Although gp50 is a very small protein, consisting almost entirely of an apparent membrane-spanning domain, it contributed significantly to each activity tested. We identify SPO1 genes 41 to 51 and 53 to 60 as immediate-early genes; genes 27, 28, and 37 to 40 as delayed-early genes; and gene 52 as a middle gene.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
High mobility group (HMG) proteins are usually considered ubiquitous components of the eukaryotic chromatin. Using HMG gene promoter-GUS reporter gene fusions we have examined the expression of the reporter gene in transgenic Arabidopsis plants. These experiments have revealed that the different HMGA and HMGB promoters display overlapping patterns of activity, but they also show tissue- and developmental stage-specific differences. Moreover, leader introns that are present in some of the HMGB genes can modulate reporter gene expression. The differential HMG gene expression supports the view that the various HMG proteins serve partially different architectural functions in plant chromatin.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号