首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The effects of aging on in vivo DNA and RNA labeling and on RNA content in various brain regions of 4-, 12-, and 24-month-old rats were investigated. No difference in [methyl-14C]thymidine incorporation into DNA of cerebral cortex and cerebelllum during aging was observed.The ratio of RNA/DNA content significantly decreased from 4 to 24 months of age in cerebral cortex, cerebellum and striatum. RNA labeling decreased by 15% in cerebral cortex of 24-month-old animals while in the other brain areas examined (cerebellum, hippocampus, hypothalamus, brainstem, striatum) did not change during aging.In the cerebral cortex, the ratio of the specific radioactivity of microsomal RNA to that of nuclear RNA, determined by in vivo experiments, was not affected by the aging process. A significant decrease of total, poly(A)+ RNA and poly(A)- RNA content was observed in the same brain area of 24-month-old rats compared to 4-month-old ones. Moreover, densitometric and radioactivity patterns obtained by gel electrophoresis of labeled RNA after in vitro experiments (tissue slices of cerebral cortex) showed a different ribosomal RNA processing during aging. In vivo chronic treatment with CDP-choline was able to increase RNA labeling in corpus striatum of 24-month-old animals.  相似文献   

2.
BIOCHEMICAL EFFECTS OF THYROID DEFICIENCY ON THE DEVELOPING BRAIN   总被引:12,自引:1,他引:11  
Abstract— The effects of neonatal thyroidectomy on some constituents of the cerebrum, cerebellum and liver of the rat have been studied during the first 7 weeks of life. In the normal rat between the 6th and 14th post-natal days the RNA content per unit of DNA in the brain increased by 70 per cent. Although the brain continued to grow from the 14th to the 35th day, the amount of RNA relative to DNA decreased by about 20 per cent. The ratio of protein to DNA increased during the whole period studied and in the cerebral cortex it was more than trebled between the age of 6 and 35 days. The growth of the cerebellum extended over a longer period than that of the cerebrum, its weight increasing by 88 per cent between the ages of 14 and 35 days as compared with a cerebral increase of 34 per cent. The DNA content showed a 50 per cent increase during this period. Qualitatively these maturational changes were not affected by neonatal thyroidectomy. Quantitative changes, which applied equally to the cerebral cortex and brain as a whole, were observed. At the age of 35 days, the weights of the cerebral hemispheres and cerebellum were reduced by thyroidectomy by 20 per cent; the overall DNA content per organ did not change, but the amounts of protein and RNA relative to DNA decreased significantly. It is therefore inferred that thyroid deficiency affects the size of the cells in brain and cerebellum rather than their total number. Conversely, the cell population of the liver was only a quarter of that in the control. There was a small but significant decrease in the hepatic protein and RNA content in the hypothyroid animal. The activities of the following enzymes which served as markers for subcellular fractions in homogenates of cerebral cortex were determined: lactate dehydrogenase for the supernatant, glutamate dehydrogenase for the mitochondrial and glutamate decarboxylase for the synaptosomal fractions. When the activities were expressed on a fresh weight basis a significant decrease by comparison with the control values was observed only in the case of glutamate decarboxylase (—15 per cent at the age of 17–32 days); when the activities were based on DNA content all values were reduced, probably as a result of the general decrease in cell size. Pyrimidine metabolism of brain and liver, studied after the administration of [6-14C]-orotic acid, was not affected in either tissue by neonatal thyroidectomy. A small but significant reduction in the incorporation of labelled pyrimidine nucleotides in liver RNA was observed, but no significant decrease in the incorporation in cerebral RNA was found in the hypothyroid rats.  相似文献   

3.
 本实验对不同鼠龄(4—,16—17—,33—34—和99—103周)大鼠老化动物模型进行脑细胞核、染色质体外转录研究,结果表明:(1)大脑皮层细胞核、染色质转录活性在老化过程中呈下降趋势,其中RNA聚合酶Ⅰ、Ⅱ活性与染色质模板效率变化一致,说明染色质模板活性降低是导致细胞核转录功能减退的原因之一。(2)幼年鼠染色质RNA和NHCP含量高于老年鼠,提示染色质结合蛋白及RNA可能参与不同生理时期脑神经元染色质结构和功能的调节。(3)老年鼠脑染色质DNA抗DN-aseⅠ酶解能力增强,提示衰老导致转录活性染色质区域减少。  相似文献   

4.
Abstract: The effects of chronic manganese chloride administration (1 mg MnCl2 4H2O/ml of drinking water) and ageing on the regional distribution of monoamine oxidase (MAO, EC 1.4.3.4) were studied in 2-month- and 24–28-month-old rats. In both the control and Mn-treated rats, the serotonin oxidation (type A) rates decreased in hypothalamus, pons and medulla, striatum, midbrain and cerebral cortex, but not in cerebellum, in ageing. On the other hand the benzylamine oxidation (type B) rates in hypothalamus, striatum and cerebral cortex increased in ageing. In all regions except the cerebellum, there was a uniform decrease in the A/B ratio. This decrease was verified by differential inhibition studies using clorgyline and l -deprenyl, specific type A and type B inhibitors respectively. The dopamine-oxidising rates decreased in all regions, except the cerebral cortex and the cerebellum, in ageing control rats. This age-related decrease was not seen in the striatum and midbrain of manganese-treated rats. In these rats the other effect was an age-related increase in the rate of oxidation of all the amines in the cerebellum, not observed in control rats. These selective effects of manganese are only seen when comparing age-related changes in both groups of animals, since comparison of manganese-treated rats with age-matched controls showed a significant difference only in the rate of serotonin oxidation in the cerebellum of 2-month-old rats. The relationship of these observations to the effects of ageing and manganese encephalopathy on specific amine systems is discussed.  相似文献   

5.
Previous studies from our laboratory showed that subchronic exposure to low levels of Pb resulted in significant decrease in dopamine (DA) content, attenuation of stimulus-induced release of DA in the dopaminergic projection area of nucleus accumbens (NA), and alterations in tyrosine hydroxylase (TH) activity in rat whole brain homogenates. The present study reported here was conducted to assess the functional integrity of DA synthesis in different brain regions of rats subchronically (90-days) exposed to 50 ppm Pb by measuring the activity of the rate limiting enzyme, tyrosine hydroxylase, in seven brain regions. In Pb-exposed rats, TH activity was reduced in two of the seven brain regions investigated, i.e., nucleus accumbens (42% reduction) and frontal cortex (61% reduction) when compared to controls. In contrast, Pb exposure did not affect the TH activity in cerebellum, brainstem, hippocampus, hypothalamus and striatum. The changes in TH activity in nucleus accumbens (NA) and frontal cortex (FC) in Pb-exposed rats were further confirmed by Western blot analysis using TH polyclonal antibody. Collectively, these results indicate that low level subchronic Pb exposure may affect TH protein in these brain regions.  相似文献   

6.
Effect of latent iron deficiency on metal levels of rat brain regions   总被引:1,自引:0,他引:1  
Seven different metals (iron, copper, zinc, calcium, manganese, lead, and cadmium) were studied in eight different brain regions (cerebral cortex, cerebellum, corpus striatum, hypothalamus, hippocampus, midbrain, medulla oblongata, and pons) of weaned rats (21-d-old) maintained on an iron-deficient (18-20 mg iron/kg) diet for 8 wk. Iron was found to decrease in all the brain regions, except medulla oblongata and pons, in comparison to their respective levels in control rats, receiving an iron-sufficient (390 mg iron/kg) diet. Brain regions showed different susceptibility toward iron deficiency-induced alterations in the levels of various metals, such as zinc, was found to increase in hippocampus (19%, p less than 0.05) and midbrain (16%, p less than 0.05), copper in cerebral cortex (18%, p less than 0.05) and corpus striatum (16% p less than 0.05), calcium in corpus striatum (22%, p less than 0.01) and hypothalamus (17%, p less than 0.02), and manganese in hypothalamus (18%, p less than 0.05) only. Toxic metals lead and cadmium also increased in cerebellum (19%, p less than 0.05) and hippocampus (17%, p less than 0.05) regions, respectively. Apart from these changes, liver (64%, p less than 0.001) and brain (19%, p less than 0.01) nonheme iron contents were found to decrease significantly, but body, liver, and brain weights, packed cell volume, and hemoglobin content remained unaltered in these experimental rats. Rehabilitation of iron-deficient rats with an iron-sufficient diet for 2 wk recovered the values of zinc in both the hippocampus and mid-brain regions and calcium in the hypothalamus region only. Liver nonheme iron improved significantly; however, no remarkable effect was noticed in brain nonheme iron following rehabilitation. It may be concluded that latent iron deficiency produced alterations in various metal levels in different brain regions, and corpus striatum was found to be the most vulnerable region for such changes. It is also evident that brain regions were resistant for any recovery in their altered metallic levels in response to rehabilitation for 2 wk.  相似文献   

7.
100 mg of taurine per kg body weight had been administered intraperitoneally and 30 min after the administration the animals were sacrificed. Glutamate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, glutaminase, glutamine synthetase, glutamate decarboxylase and GABA aminotransferase along with the content of glutamate and GABA in cerebral cortex, cerebellum and brain stem were studied and compared with the same obtained in the rats treated with normal saline in place of taurine. The results indicated a significant decrease in the activity of glutamate dehydrogenase in cerebral cortex and cerebellum and a significant increase in brain stem. Glutaminase and glutamine synthetase were found to increase significantly both in cerebral cortex and cerebellum. The activities of glutamate decarboxylase was found to increase in all the three regions along with a significant decrease in GABA aminotransferase while the content of glutamate showed a decrease in all the three brain regions, the content of GABA was observed to increase significantly. The above effects of taurine on the metabolism of glutamate and GABA are discussed in relation to the functional role of GABA and glutamate. The results indicate that taurine administration would result in a state of inhibition in brain.  相似文献   

8.
A study was made to compare alterations in the cerebral contents of nucleic acids and protein of several mouse strains affected by different neurological mutations: jimpy, msd, quaking, reeler, weaver, and dwarf. In normal and affected jimpy and msd mice the brain components analyzed were very similar. On the other hand, the cerebral hemispheres of quaking mice showed significant decreases in total RNA and DNA, when compared with those of normal littermates. In the affected reeler and weaver mice, total protein, RNA, and DNA in the cerebellum differed markedly from controls. Protein decreased slightly, whereas nucleic acids showed no significant variation in the cerebral hemispheres of the same mutants. The cerebella and cerebral hemispheres of affected dwarf mice had wet weights and total protein contents that were about 20% lower than those of their controls; DNA did not vary significantly in the various brain regions analyzed. The decrease of DNA we report in reeler and weaver mutant cerebellum in toto quantifies the lack of cell number, in contrast to histological studies which give only semiquantitative information.  相似文献   

9.
The effect of administration of chlorpromazine on the activity of glutamine synthetase and glutaminase and the content of glutamate and gamma-aminobutyric acid (GABA) in different regions of rat brain was studied in an investigation of the possible role of these amino acids in the lowering of the seizure threshold following prolonged administration of chlorpromazine. Chlorpromazine was administered at a dose of 20 mg/kg of body weight s.c. For the acute study, the animals were killed 20 min after a single injection. For the long-term study, the animals were treated every day with the same dose for 21 days and were killed 20 min after the last injection. The results showed an increase in glutamate level in each brain region investigated following long-term administration, but only in the cerebral cortex after a single dose. GABA levels showed an increase in the brainstem only in acute experiments. Glutamine synthetase activity was increased in all three regions after a single dose and only in cerebral cortex after long-term administration. Glutaminase activity showed a decrease in cerebral cortex only after long-term administration of the drug. These results suggest the possible occurrence of a state of increased excitability in the brain as a result of long-term administration of chlorpromazine, thus contributing to the known complication of seizures.  相似文献   

10.
A two-wave-length cytophotometry of the gallocyanin-chromium alum-stained preparations showed that in adult rats kept for 30 days in complete darkness there was a decrease in the RNA content in the perineuronal neuroglia of the retinal ganglion cell layer only, with no changes in the corresponding neurons. No changes were found in the neurons and in the perineuronal glia of the layer II---III of the visual cerebral cortex. After the end of light deprivation a 2-hour stimulation with a constant or flickering light did not influence the RNA content in the neurons of both regions of the visual analyzer studied, whereas in control rats this stimulation induced a marked increase in the RNA content in these neurons. Qualitative changes in the metabolism of the cellular RNA in the nervous system of adult animals under the effect of light deprivation are emphasized. Differences in the biochemical peculiarities of various neuron-neuroglia systems, depending on their localization in the visual analyzer, are discussed.  相似文献   

11.
Acute and chronic ammonia toxicity was produced in the mice by intraperitoneal injection of ammonium chloride (200 mg/kg) and by exposure of mice to ammonia vapours (5% v/v) continuously for 2 days and 5 days respectively. The ammonia content was elevated in the cerebellum, cerebral cortex and brain stem and in liver. In acute ammonia intoxication there was a decrease in the monoamine oxidase (MAO) activity in all the three regions of brain. In chronic ammonia toxicity (2 days of exposure) a significant increase in the activity of MAO was observed in the cerebral cortex while in cerebellum and brain stem there was a significant decrease. In cerebral cortex and cerebellum there was a rise in the activity of MAO as a result of exposure to ammonia vapours for 5 days. A significant decrease was observed in the activity of glutamate decarboxylase (GAD) in all the three regions of the brain both in acute and chronic ammonia toxicity (2 days). There was a decrease in the activity of this enzyme only in the cerebral cortex in the animals exposed to ammonia for 5 days. The activity of GABA-aminotransferase (GABA-T) showed a significant rise in cerebellum and a fall in the brain stem in acute ammonia toxicity. In chronic ammonia toxicity GABA-T showed a rise in all the three regions of brain. Chronic ammonia toxicity produced a significant decrease in the content of glutamate in all the three regions without a significant change in the content of aspartate. GABA and glutamine. The content of alanine increased in all the three regions of brain under these experimental conditions. The ratio of glutamate + aspartate/GABA and glutamate/glutamine showed a decrease in all the three regions as a result of ammonia toxicity.  相似文献   

12.
Glutathione content and glutamyl transpeptidase activity in different regions of adult female rat brain were determined at 10 and 30 min following intraventricular injection of LHRH and somatostatin. Hypothalamic glutathione levels were significantly elevated at 10 and 30 min after a single injection of a 0.1 micrograms dose of LHRH. On the contrary, glutathione levels significantly decreased in the hypothalamus, cerebral cortex and cerebellum at 10 and 30 min after 0.5 or 1 microgram dose. However, significant decrease in brain stem glutathione was evident at 30 min after 0.5 microgram and 10 min after the 1 microgram dose. Somatostatin at doses of 0.5 microgram and 1 microgram significantly decreased glutathione levels in all four brain regions both at 10 and 30 min following injection into the 3rd ventricle. Gamma-glutamyl transpeptidase activity in the hypothalamus and cerebral cortex was significantly elevated after intraventricular injection of LHRH. However, a significant increase in gamma-glutamyl transpeptidase activity in cerebellum and brain stem was seen only with 0.5 and 1 micrograms doses of LHRH. Somatostatin also significantly increased gamma-glutamyl transpeptidase activity in hypothalamus, cerebral cortex, brain stem and cerebellum. The decrease in glutathione levels with corresponding increase in gamma-glutamyl transpeptidase activity after intraventricular administration of LHRH and somatostatin suggests a possible interaction between glutathione and hypothalamic peptides.  相似文献   

13.
The effect of selenium (Se) on Vicia faba L. minor roots subjected to lead (Pb) stress was studied by investigating root growth, root viability, and antioxidant enzyme activity. The experiments were carried out on plants grown for 2 weeks on Hoagland medium supplied with 50 μM Pb in the form of lead nitrate Pb(NO(3))(2) and/or Se concentrations of 1.5 and 6 μM in the form of sodium selenite Na(2)SeO(3). It was shown that Pb reduced the root growth and caused serious damage in the roots, which was accompanied by metal accumulation in these tissues. The exposition of roots to Pb led to significant changes in the biochemical parameters: the MDA and T-SH content and glutathione peroxidase (GSH-Px) activity increased but the guaiacol peroxidase (GPOX) activity decreased. Moreover, Pb intensified O(2)(·-) production in the roots. Selenium at a lower concentration alleviated Pb toxicity which was accompanied by a decreased O(2)(·-) production in the apical parts of roots and increased the T-SH content and GPOX activity. However, higher Se concentration intensified MDA and T-SH accumulation and GPOX and GSH-Px activity in Pb-treated plant roots. At low concentration, Se improved cell viability whereas at high concentration it was pro-oxidant and enhanced the lipid peroxidation and cell membrane injury.  相似文献   

14.
Postnatal developmental patterns of uridine kinase were determined in crude subcellular fractions of the rat cerebellum, hypothalamus and cerebral cortex at ages 3 through 60 days. The highest specific activity and predominant distribution of enzyme was in the 105,000g supernatant of the 3 brain regions. Enzyme activity in hypothalamus and cerebral cortex was maximum at 3 days and decreased with age; in cerebellum it increased through 13 days and decreased thereafter. Thus, the pattern of activity in hypothalamus and cerebral cortex paralleled changes in DNA and RNA synthesis through age 60 days; in cerebellum, it more closely approximated changes in DNA synthesis during early development. Changes inK m with aging suggest that the brain regions contain more than one form of enzyme. The highest particulate activity was in the microsomal fraction of the cerebellum and hypothalamus at all ages and in the cortex at 35 and 60 days. Relative specific activity for microsomal fractions of the brain regions at 60 days indicate a concentration of the enzyme which may be relevant in the maintenance of RNA activity in adult brain.  相似文献   

15.
Acute effects of intraperitoneal administration of ammonium chloride (200 mg/kg) on Na+,K+-ATPase and amino acid content of the glutamate family (glutamate, aspartate, alanine, glutamine, and GABA), as well as the enzymes involved in the metabolism of these amino acids, have been studied in the different regions of brain and liver in mice. A significant increase in the activity of Na+,K+-ATPase was observed in the cerebellum, cerebral cortex, and brain stem. A similar increase in the activity of glutamate dehydrogenase was observed in the brain stem, while a moderate increase in the activity of this enzyme was observed in the cerebral cortex and liver in the mice treated with ammonium chloride. In all three regions of brain, a 50% decrease was observed in the activity of alanine aminotransferase, while the activity of aspartate aminotransferase significantly rose in the brain stem. The activity of glutamine synthetase did not change much in the three regions of brain, and a significant fall was registered in the liver. The activity of tyrosine aminotransferase showed a rise in the cerebellum, brain stem, and in liver. Not much change was observed in the protein content in either brain or liver, whereas there was a 1.5-fold increase in the total RNA content in the liver of the animals treated with ammonium chloride. Under the experimental conditions, there was an increase only in the content of glutamine, of all the amino acids tested, in the cerebral cortex and liver. Similar results were obtained with homogenates of tissues enriched with ammonium chloride (in vitro) for the enzyme systems studied. These results are discussed, and the probable metabolic and functional significance of ammonia in brain is indicated.  相似文献   

16.
1. In the rat cerebral cortex net DNA synthesis ceases when the animal has reached about 25g. body weight (18 days of age). There is then little further change in the DNA content per cortex. 2. Nuclear and transfer RNA follow a similar pattern to DNA. 3. Microsomal and ribosomal RNA content increases up to 25g. body weight but then declines. The decrease in ribosomal and microsomal RNA content is associated with a change in RNA base composition. 4. Incorporation of [(14)C]orotic acid into nuclear RNA proceeds at a similar rate in 4-day-old and adult animals. However, there is a lag period of about 60min. in the young animals during which incorporation into the ribosome fractions proceeds slowly. In the adult animals the lag period is not seen.  相似文献   

17.
The effects of long-term lead (Pb) exposure producing a blood Pb concentration of lower than 20 μg/dL, i.e. below that associated with overt neurological deficits in occupationally exposed individuals, was studied in adult rats. In order to assess gender differences, we performed parallel behavioral experiments in male and female rats. Exposure to Pb acetate (50 ppm in drinking water) for 6 months induced motor and cognitive alterations, however these effects were gender- and task-dependent. Chronic lead exposure impaired spatial learning assessed in the Morris water maze test (MWM) in both genders, whereas it only induced hyperactivity in the open field and impaired motor coordination in the rotarod test, only in male rats. Hyperactivity in male rats was accompanied by an increase in extracellular level of acetylcholine in the prefrontal cortex. Extracellular dopamine concentration in the prefrontal cortex was unaffected by lead exposure whereas serotonin concentration in the same brain area was significantly decreased in both male and female rats exposed to lead. These results unveil new molecular mechanisms underlying neuropsychiatric alterations induced by chronic lead exposure.  相似文献   

18.
19.
Xu DX  Shen HM  Zhu QX  Chua L  Wang QN  Chia SE  Ong CN 《Mutation research》2003,534(1-2):155-163
To explore the associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma, 56 non-smoking subjects were asked to collect semen by masturbation into a sterile wide-mouth metal-free plastic container after 3 days of abstinence. The conventional semen parameters were analysed. The concentrations of Cd, Pb and Se in seminal plasma were detected using atomic absorption spectrophotometer. 8-OHdG levels in sperm DNA were measured using HPLC-EC. The results showed that the geometric mean concentrations of Cd, Pb and Se were 0.78, 7.8 and 51.4 microg/l, respectively. The geometric mean of 8-OHdG/10(6) dG was 51.4 (95% CI: 21.5-123.0). A significant inverse correlation exists between Cd and sperm density (r=-0.28, P<0.05), and between Cd and sperm number per ejaculum (r=-0.27, P<0.05). In contrast, there was a significantly positive correlation between Se and sperm density (r=0.50, P<0.01), between Se and sperm number (r=0.49, P<0.01), between Se and sperm motility (r=0.40, P<0.01), and between Se and sperm viability (r=0.38, P<0.01). No statistically significant correlation was observed between Pb and semen quality. A significant inverse correlation was observed between 8-OHdG and sperm density (r=-0.34, P<0.01), between 8-OHdG and sperm number per ejaculum (r=-0.30, P<0.01), and 8-OHdG and sperm viability (r=-0.24, P<0.05). 8-OHdG was significantly correlated with Cd in seminal plasma (r=0.55, P<0.01). A significant but weak positive correlation was found between 8-OHdG and Pb concentration in seminal plasma (r=0.28, P<0.05). In contract, a significant inverse correlation was observed between 8-OHdG and Se concentration in seminal plasma (r=-0.40, P<0.01). The results indicate that Cd in seminal plasma could affect semen quality and oxidative DNA damage in human spermatozoa. Se could protect against oxidative DNA damage in human sperm cells. Pb did not appear to have any association with the semen quality when concentration of Pb in seminal plasma was below 10 microg/l.  相似文献   

20.
DEPRIVATION OF PARADOXICAL SLEEP AND BRAIN GLYCOGEN   总被引:2,自引:2,他引:0  
Abstract— Rats deprived of paradoxical sleep (PS) for 72 hr showed a considerable fall of total glycogen in the subcortex and caudal brain stem. No important changes were discovered in the parts of the cerebral cortex which were examined. The stress of the experimental technique of PS deprivation did not lead to significant changes in glycogen content in any of the structures examined. It was concluded that changes in glycogen content corresponded specifically to PS deprivation stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号