首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human blood platelets release alpha-6-fucosyltransferase during coagulation of blood or after stimulation with thrombin or other agonists that cause platelet activation (Antoniewicz et al., FEBS Lett. 244 (1989) 388-390). However, in the absence of neutrophils the thrombin-stimulated platelets release only a small fraction of alpha-6-fucosyltransferase activity (Ko?cielak et al., Acta Biochim. Polon. 42 (1995) 35-40). We show that the effect of neutrophils is reproduced by cathepsin G or (less efficiently) by elastase, the two enzymes that are released by neutrophils during coagulation of blood. We have also localized alpha-6-fucosyltransferase to membrane and alpha-granule fractions of platelets that had been disrupted by nitrogen cavitation. It is concluded that thrombin-activated neutrophils release cathepsin G and elastase that promote degranulation of platelets and hence the secretion of alpha-6-fucosyltransferase.  相似文献   

2.
Of the four known protease-activated receptors (PARs), PAR1 and PAR4 are expressed by human platelets and mediate thrombin signaling. Whether these receptors are redundant, interact, or play at least partially distinct roles is unknown. It is possible that PAR1 and/or PAR4 might confer responsiveness to proteases other than thrombin. The neutrophil granule protease, cathepsin G, is known to cause platelet secretion and aggregation. We now report that this action of cathepsin G is mediated by PAR4. Cathepsin G triggered calcium mobilization in PAR4-transfected fibroblasts, PAR4-expressing Xenopus oocytes, and washed human platelets. An antibody raised against the PAR4 thrombin cleavage site blocked platelet activation by cathepsin G but not other agonists. Desensitization with a PAR4 activating peptide had a similar effect. By contrast, inhibition of PAR1 function had no effect on platelet responses to cathepsin G. When neutrophils were present, the neutrophil agonist fMet-Leu-Phe triggered calcium signaling in Fura-2-loaded platelets. Strikingly, this neutrophil-dependent platelet activation was blocked by the PAR4 antibody. These data show that PAR4 mediates platelet responses to cathepsin G and support the hypothesis that cathepsin G might mediate neutrophil-platelet interactions at sites of vascular injury or inflammation.  相似文献   

3.
In the nanomolar enzyme and inhibitor concentration range, 1 mol of mucus proteinase inhibitor (MPI) inhibits 1 mol of neutrophil elastase, cathepsin G, trypsin, and chymotrypsin. In the micromolar concentration range, the enzyme:inhibitor binding stoichiometry is still 1:1 for elastase but shifts to 2:1 for the three other proteinases. These data could be confirmed by three nonenzymatic methods: (i) fluorescence anisotropy measurements of mixtures of proteinases with 5-dimethylaminonaphthalene-1-sulfonylated or fluoresceinylated MPI, (ii) absorption spectrocospy of fluorescein-MPI-proteinase complexes isolated by gel filtration, (iii) analytical ultracentrifugation which showed that the molecular mass of the MPI-chymotrypsin complex is 56 kDa, whereas that of the MPI-elastase complex is 39 kDa. The binary MPI-elastase complex is unable to inhibit trypsin or cathepsin G. On the other hand, 1 mol of elastase displaces 2 mol of trypsin or cathepsin G from their ternary complexes with MPI.  相似文献   

4.
Interaction of heparin cofactor II with neutrophil elastase and cathepsin G   总被引:1,自引:0,他引:1  
We investigated the interaction of the human plasma proteinase inhibitor heparin cofactor II (HC) with human neutrophil elastase and cathepsin G in order to examine 1) proteinase inhibition by HC, 2) inactivation of HC, and 3) the effect of glycosaminoglycans on inhibition and inactivation. We found that HC inhibited cathepsin G, but not elastase, with a rate constant of 6.0 x 10(6) M-1 min-1. Inhibition was stable, with a dissociation rate constant of 1.0 x 10(-3) min-1. Heparin and dermatan sulfate diminished inhibition slightly. Both neutrophil elastase and cathepsin G at catalytic concentrations destroyed the thrombin inhibition activity of HC. Inactivation was accompanied by a dramatic increase in heat stability, as occurs with other serine proteinase inhibitors. Proteolysis of HC (Mr 66,000) produced a species (Mr 58,000) that retained thrombin inhibition activity, and an inactive species of Mr 48,000. Amino acid sequence analysis led to the conclusion that both neutrophil elastase and cathepsin G cleave HC at Ile66, which does not affect HC activity, and at Val439, near the reactive site Leu444, which inactivates HC. Since cathepsin G is inhibited by HC and also inactivates HC, we conclude that cathepsin G participates in both reactions simultaneously so that small amounts of cathepsin G can inactivate a molar excess of HC. High concentrations of heparin and dermatan sulfate accelerated inactivation of HC by neutrophil proteinases, with heparin having a greater effect. Heparin and dermatan sulfate appeared to alter the pattern, and not just the rate, of proteolysis of HC. We conclude that while HC is an effective inhibitor of cathepsin G, it can be proteolyzed by neutrophil proteinases to generate first an active inhibitor and then an inactive molecule. This two-step mechanism might be important in the generation of chemotactic activity from the amino-terminal region of HC.  相似文献   

5.

Background

The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear.

Methodology/Principal Findings

Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca2+ signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl3. Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen).

Conclusions/Significance

FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).  相似文献   

6.
Macrophages at sites of inflammation are exposed to proteolytic enzymes derived from neutrophils, platelets, clotting factors, complement, and damaged tissues. To investigate the possible effect of proteases on the plasma membrane-mediated oxidative metabolic response of macrophages in inflammatory sites, cultured human monocyte-derived macrophages were treated in vitro with proteolytic enzymes and were then assayed for their ability to release superoxide anion (O2-) and hydrogen peroxide (H2O2) in response to stimuli. Macrophages pretreated for 1 to 20 min with trypsin, chymotrypsin, pronase, or papain, 0.1 to 200 micrograms/ml, released up to 3.5-times more O2- and H2O2 than did control (untreated) cells. This enhanced production of oxygen metabolites was observed by using either phorbol myristate acetate or opsonized zymosan as the stimulus. Macrophages were also "primed" for enhanced O2- release (2.3-fold) by pretreatment with a subfraction of granules extracted from human neutrophils. This subfraction contained primarily elastase and cathepsin G. Similar enhancement was observed with 60 ng/ml or purified human neutrophil cathepsin G (2.2-fold) and with 20 micrograms/ml of purified neutrophil elastase (3.3-fold). Priming by these neutrophil proteases could be blocked by specific inhibitors of their proteolytic activity. These results suggest that macrophages involved in an inflammatory response might be rapidly primed by proteases released from degranulating neutrophils. Primed macrophages could mount a more effective oxidative metabolic response to microorganisms or tumor cells, but might also cause greater tissue damage.  相似文献   

7.
Although prior studies with mAb have defined an endogenous chymotrypsin-like protease in the neutrophil (polymorphonuclear leukocyte (PMN)) membrane that is associated with initiation of superoxide response to inflammatory stimuli, it is not known whether extracellular proteases (in the inflammatory milieu) can also influence PMN activation. This study examined the ability of four neutral proteases: cathepsin G, elastase, chymotrypsin, and trypsin, to modify PMN superoxide response to FMLP, PMA, and arachidonate. In response to 1 microM FMLP, PMN treated with cathepsin G, chymotrypsin, or elastase showed 64%, 60%, and 32% increases, respectively, in superoxide generation when compared with control, untreated cells (p less than 0.05 for each). These increments were dependent on intact enzymatic function of the proteases, were greatest when enzyme and stimulus were added concurrently, and persisted after PMN were washed free of enzyme. Enhancement of superoxide response was not stimulus specific; in response to 10 ng/ml PMA, cells treated with cathepsin G showed a 84%, and elastase a 57%, increase in superoxide generation (p less than 0.05 for both) with a marked reduction in the time required for onset of this response. For cell activation with 80 microM arachidonate, treatment with elastase produced a 180% increase in superoxide production (p less than 0.025). Neutrophils incubated with trypsin demonstrated significant decreases in superoxide response to PMA (-34%, p less than 0.05) and arachidonate (-39%, p less than 0.01). The enzymes themselves were not stimuli for superoxide production nor were they scavengers for superoxide in cellfree system. We conclude that local release of the PMN primary-granule neutral proteases, cathepsin G, and elastase within inflammatory sites can augment neutrophil effector function by up-regulating oxidative response to defined inflammatory stimuli. This autocrine/paracrine function may provide a significant increase in antimicrobial activity, but may also enhance the potential for host tissue injury.  相似文献   

8.
Blood coagulation factor XII (FXII, Hageman factor) is a plasma serine protease which is autoactivated following contact with negatively charged surfaces in a reaction involving plasma kallikrein and high-molecular-weight kininogen (contact phase activation). Active FXII has the ability to initiate blood clotting via the intrinsic pathway of coagulation and inflammatory reactions via the kallikrein-kinin system. Here we have determined FXII-mediated bradykinin formation and clotting in plasma. Western blotting analysis with specific antibodies against various parts of the contact factors revealed that limited activation of FXII is sufficient to promote plasma kallikrein activation, resulting in the conversion of high-molecular-weight kininogen and bradykinin generation. The presence of platelets significantly promoted FXII-initiated bradykinin formation. Similarly, in vitro clotting assays revealed that platelets critically promoted FXII-driven thrombin and fibrin formation. In summary, our data suggest that FXII-initiated protease cascades may proceed on platelet surfaces, with implications for inflammation and clotting.  相似文献   

9.
The conversion of inter-alpha-trypsin inhibitor (I alpha I) into active, acid-stable derivatives by proteolytic degradation has been tested with 10 different proteinases. Of these, only plasma kallikrein, cathepsin G, neutrophil elastase, and the Staphylococcus aureus V-8 proteinase were found to be effective, each releasing more than 50% of this activity. However, a strong correlation between inhibitor degradation and significant release of acid-stable activity could only be found with the V-8 enzyme. Inhibition kinetics for the interaction of native I alpha I, the inhibitory fragment released by digestion with S. aureus V-8 proteinase, or the related urinary trypsin inhibitor, with seven different proteinases indicated that all had essentially identical Ki values with an individual enzyme and, where measurements were possible, nearly identical second order association rate constants. Significantly, none of the five human proteinases tested, including trypsin, chymotrypsin, plasmin, neutrophil elastase, and cathepsin G, would appear to have low enough Ki values to be physiologically relevant. Thus, the role of native I alpha I or its degradation products in controlling a specific proteolytic activity is still unknown.  相似文献   

10.
Human mucus proteinase inhibitor (MPI) consists of 107 amino acids arranged in two domains showing high homology to each other. This protein is an inhibitor of different serine proteinases including trypsin, chymotrypsin, leukocyte elastase and cathepsin G. On the basis of sequence comparisons it has been suggested that the first domain inhibits trypsin, whereas the second one was thought to be active against chymotrypsin and elastase. To prove the location of the different inhibitory activities gene fragments for both domains have been cloned separately and expressed in Escherichia coli. Inhibition assays with the isolated recombinant domains showed that the second domain is active against chymotrypsin, neutrophil elastase and trypsin, whereas for the first domain only a weak activity against trypsin could be detected. These results suggest that the inhibitory activities of the native molecule towards these three proteinases are all located in the second domain.  相似文献   

11.
Isolated human granulocyte plasma membranes contain progelatinase B. The binding of progelatinase B to the membrane, however, is relatively weak, and a considerable part of progelatinase B can be removed by simply washing the membrane with buffer. This detachment does not depend on the ionic strength of the buffer, indicating that electrostatic forces do not play an important role in the binding of progelatinase B to the membrane. A complete removal of progelatinase B is achieved by chromatography of neutrophil membranes on gelatin-agarose. The plasma membrane of human granulocytes activates added progelatinase B. This activation is inhibited by soybean trypsin inhibitor and is thus performed by membrane bound serine proteinases. In contrast to other reports that claimed an important role of elastase in activating progelatinase B, we found that this activation is mostly inhibited by chymostatin and not by elastatinal and is thus primarily due to cathepsin G. Proteinase 3 was shown to activate progelatinase B as efficient as neutrophil elastase, i. e. much weaker than cathepsin G. Binding of cathepsin G and elastase to the neutrophil membrane does not change their ability to activate progelatinase B. However, cathepsin G, the most potent activator of the three neutrophil serine proteinases, is only a weak activator, when compared to stromelysin-1. This, as well as only a weak binding of progelatinase B, make it doubtful that activation of membrane-bound progelatinase B by membrane-bound serine proteinases is of significant physiological importance.  相似文献   

12.
The Western corn rootworm is one of the most economically important pests in corn. One possibility for controlling this pest is the cultivation of transgenic corn expressing Bacillus thuringiensis (Bt) toxins, such as Cry3A, Cry34Ab1/Cry35Ab1, and Cry3Bb1. However, widespread cultivation of the resulting Bt corn may result in the development of resistant pest populations. The Bt toxins are processed by proteases in the midgut of susceptible insects. Thus, protease activity studies were conducted using the midgut juice (pH 5.75) from third instars larvae of the susceptible Western corn rootworm. As a result, the activities of the serine endopeptidases trypsin, chymotrypsin, elastase, cathepsin G, plasmin, and thrombin; the cysteine endopeptidases cathepsin L, papain, cathepsin B, and cathepsin H; the aspartic endopeptidase pepsin; the metallo endopeptidase saccharolysin; the exopeptidase aminopeptidase, and the omegapeptidase acylaminoacylpeptidase were detected. These results are of basic interest but also lead to reference systems for the identification of protease-mediated resistance mechanisms in potentially resistant individuals.  相似文献   

13.
To study the pathways for initiation of intrinsic blood coagulation, activated human platelets were compared with dextran sulfate as surfaces for factor XI activation by factor XIIa, factor XIa, or thrombin. Activated gel-filtered platelets promoted the activation of factor XI (60 nm) by thrombin (0.02-10 nm, EC(50) approximately 100 pm, threshold concentration approximately 10 pm) at initial rates 2- to 3-fold greater than those obtained with dextran sulfate in the presence of either high molecular weight kininogen (45 nm) and ZnCl(2) (25 micrometer) or prothrombin (1.2 micrometer) and CaCl(2) (2 mm). The maximum rates of factor XI activation achieved in the presence of activated gel-filtered platelets were 30 nm.min(-1) with thrombin, 6 nm.min(-1) with factor XIIa and 2 nm.min(-1) with factor XIa. Values of turnover number calculated at various enzyme concentrations (0.05-1 nm) were 24-167 (mean = 86) min(-1) for thrombin, 4.6-50 (mean = 21) min(-1) for factor XIIa, and 1.3-14 (mean = 8) min(-1) for factor XIa. A physiological concentration of fibrinogen (9.0 micrometer) inhibited factor XI activation by thrombin (but not by factor XIIa) in the presence of dextran sulfate but not in the presence of gel-filtered platelets. Compared with factors XIIa and XIa, thrombin is the preferred factor XI activator, and activated platelets are a relevant physiological surface for thrombin-mediated initiation of intrinsic coagulation in vivo.  相似文献   

14.
Protease-activated receptors (PARs) mediate cell activation after proteolytic cleavage of their extracellular amino terminus. Thrombin selectively cleaves PAR1, PAR3, and PAR4 to induce activation of platelets and vascular cells, while PAR2 is preferentially cleaved by trypsin. In pathological situations, other proteolytic enzymes may be generated in the circulation and could modify the responses of PARs by cleaving their extracellular domains. To assess the ability of such proteases to activate or inactivate PARs, we designed a strategy for locating cleavage sites on the exofacial NH(2)-terminal fragments of the receptors. The first extracellular segments of PAR1 (PAR1E) and PAR2 (PAR2E) expressed as recombinant proteins in Escherichia coli were incubated with a series of proteases likely to be encountered in the circulation during thrombosis or inflammation. Kinetic and dose-response studies were performed, and the cleavage products were analyzed by MALDI-TOF mass spectrometry. Thrombin cleaved PAR1E at the Arg41-Ser42 activation site at concentrations known to induce cellular activation, supporting a native conformation of the recombinant polypeptide. Plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3 cleaved at multiple sites and would be expected to disable PAR1 by cleaving COOH-terminal to the activation site. Cleavage specificities were further confirmed using activation site defective PAR1E S42P mutant polypeptides. Surface plasmon resonance studies on immobilized PAR1E or PAR1E S42P were consistent with cleavage results obtained in solution and allowed us to determine affinities of PAR1E-thrombin binding. FACS analyses of intact platelets confirmed the cleavage of PAR1 downstream of the Arg41-Ser42 site. Mass spectrometry studies of PAR2E predicted activation of PAR2 by trypsin through cleavage at the Arg36-Ser37 site, no effect of thrombin, and inactivation of the receptor by plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3. The inhibitory effect of elastase was confirmed on native PAR1 and PAR2 on the basis of Ca(2+) signaling studies in endothelial cells. It was concluded that none of the main proteases generated during fibrinolysis or inflammation appears to be able to signal through PAR1 or PAR2. This strategy provides results which can be extended to the native receptor to predict its activation or inactivation, and it could likewise be used to study other PARs or protease-dependent processes.  相似文献   

15.
Cathepsin G is a strong platelet agonist released by neutrophils.   总被引:9,自引:1,他引:8       下载免费PDF全文
The present studies were undertaken to characterize a serine protease released by N-formyl-L-Met-L-Leu-L-Phe (fMet-Leu-Phe)-stimulated neutrophils that rapidly induces platelet calcium mobilization, secretion and aggregation. The biological activity associated with this protease was unaffected by leupeptin, was only weakly diminished by N-p-tosyl-L-Lys-chloromethane, but was strongly inhibited by alpha 1-antitrypsin, soyabean trypsin inhibitor, N-tosyl-L-Phe-chloromethane and benzoyloxycarbonyl-Gly-Leu-Phe-chloromethane (Z-Gly-Leu-PheCH2Cl). These observations indicated that the biological activity of neutrophil supernatants could be attributed to a chymotrypsin-like enzyme such as cathepsin G. Furthermore, platelet aggregation and 5-hydroxytryptamine release induced by cell-free supernatants from fMet-Leu-Phe-stimulated neutrophils were found to be blocked by antiserum to cathepsin G in a concentration-dependent manner but were unaffected by antiserum to elastase. The biological activity present in neutrophil supernatants co-purified with enzymic activity for cathepsin G during sequential Aprotinin-Sepharose affinity chromatography and carboxymethyl-Sephadex chromatography. SDS/polyacrylamide-gel electrophoresis of the reduced, purified protein, demonstrated three polypeptides with apparent Mr values of 31,500, 29,000 and 28,000 and four polypeptides were resolved on acid-gel electrophoresis. Purified cathepsin G from neutrophils cross-reacted with anti-(cathepsin G) serum in a double immunodiffusion assay and elicited platelet calcium mobilization, 5-hydroxytryptamine secretion and aggregation. Calcium mobilization and secretion induced by low concentrations of cathepsin G were partially dependent on arachidonic acid metabolites and ADP, while stimulation by higher enzyme concentrations was independent of amplification pathways, indicating that cathepsin G is a strong platelet agonist. These results suggest that pathological processes which stimulate neutrophils and release cathepsin G can in turn result in the recruitment and activation of platelets.  相似文献   

16.
Transmigration of neutrophils across the endothelium occurs at the cell-cell junctions where the vascular endothelium cadherin (VE cadherin) is expressed. This adhesive receptor was previously demonstrated to be involved in the maintenance of endothelium integrity. We propose that neutrophil transmigration across the vascular endothelium goes in parallel with cleavage of VE cadherin by elastase and cathepsin G present on the surface of neutrophils. This hypothesis is supported by the following lines of evidence. 1) Proteolytic fragments of VE cadherin are released into the culture medium upon adhesion of neutrophils to endothelial cell monolayers; 2) conditioned culture medium, obtained after neutrophil adhesion to endothelial monolayers, cleaves the recombinantly expressed VE cadherin extracellular domain; 3) these cleavages are inhibited by inhibitors of elastase; 4) VE cadherin fragments produced by conditioned culture medium or by exogenously added elastase are identical as shown by N-terminal sequencing and mass spectrometry analysis; 5) both elastase- and cathepsin G-specific VE cadherin cleavage patterns are produced upon incubation with tumor necrosis factor alpha-stimulated and fixed neutrophils; 6) transendothelial permeability increases in vitro upon addition of either elastase or cathepsin G; and 7) neutrophil transmigration is reduced in vitro in the presence of elastase and cathepsin G inhibitors. Our results suggest that cleavage of VE cadherin by neutrophil surface-bound proteases induces formation of gaps through which neutrophils transmigrate.  相似文献   

17.
Human inter-alpha-trypsin inhibitor (I alpha I) is a plasma proteinase inhibitor active against cathepsin G, leucocyte elastase, trypsin and chymotrypsin. It owes its broad inhibitory specificity to tandem Kunitz-type inhibitory domains within an N-terminal region. Sequence studies suggest that the reactive-centre residues critical for inhibition are methionine and arginine. Reaction of I alpha I with the arginine-modifying reagent butane-2,3-dione afforded partial loss of inhibitory activity against both cathepsin G and elastase but complete loss of activity against trypsin and chymotrypsin. Reaction of I alpha I with the methionine-modifying reagent cis-dichlorodiammineplatinum(II) resulted in partial loss of activity against cathepsin G and elastase but did not affect inhibition of either trypsin or chymotrypsin. Employment of both reagents eliminated inhibition of cathepsin G and elastase. These findings suggest that both cathepsin G and elastase are inhibited at either of the reactive centres of I alpha I. Trypsin and chymotrypsin, however, appear to be inhibited exclusively at the arginine reactive centre.  相似文献   

18.
Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.  相似文献   

19.
Receptor and G protein-mediated responses to thrombin in HEL cells.   总被引:6,自引:0,他引:6  
Thrombin is believed to activate platelets via cell surface receptors coupled to G proteins. In order to better understand this process, we have examined the interaction of thrombin with HEL cells, a leukemic cell line that has served as a useful model for studies of platelet structure and function. In HEL cells, as in platelets, thrombin stimulated inositol trisphosphate (IP3) formation and suppressed cAMP synthesis. Both events were inhibited by pertussis toxin with 50% inhibition occurring at a toxin concentration that ADP-ribosylated 50% of the Gi alpha subunits present in HEL cells. IP3 formation was also stimulated by a second serine protease, trypsin. The trypsin response was identical to the thrombin response in time course, magnitude, and pertussis toxin sensitivity, suggesting that a similar mechanism is involved. Agonist-induced changes in the cytosolic-free Ca2+ concentration were used to test this hypothesis. Both proteases caused a transient increase in intracellular calcium [Ca2+]i that could be inhibited with D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone thrombin. Exposure to either protease desensitized HEL cells against subsequent increases in [Ca2+]i and IP3 caused by the other, although responses to other agonists were retained. This loss of responsiveness persisted despite repeated washing of the cells and the addition of hirudin. Complete recovery occurred after 20 h and could be prevented with cycloheximide. These observations suggest that 1) HEL cell thrombin receptors, like those on platelets, are coupled to phospholipase C and adenylylcyclase by pertussis toxin-sensitive G proteins, 2) the G proteins involved are equally accessible to pertussis toxin in situ, 3) when access is limited to the outside of the cell the response mechanisms for thrombin and trypsin are similar, if not identical, despite the broader substrate specificity of trypsin, 4) both proteases cause persistent changes that may involve proteolysis of their receptors or associated proteins, and 5) desensitization of the thrombin response occurs at a step no later than the activation of phospholipase C and requires protein synthesis for recovery.  相似文献   

20.
Thrombelastography (TEG) is a method that is used to conduct global assays that monitor fibrin formation and fibrinolysis and platelet aggregation in whole blood. The purpose of this study was to use a well-characterized tissue factor (Tf) reagent and contact pathway inhibitor (corn trypsin inhibitor, CTI) to develop a reproducible thrombelastography assay. In this study, blood was collected from 5 male subjects (three times). Clot formation was initiated in whole blood with 5 pM Tf in the presence of CTI, and fibrinolysis was induced by adding tissue plasminogen activator (tPA). Changes in viscoelasticity were then monitored by TEG. In quality control assays, our Tf reagent, when used at 5 pM, induced coagulation in whole blood in 3.93 ± 0.23 min and in plasma in 5.12 ± 0.23 min (n=3). In TEG assays, tPA significantly decreased clot strength (maximum amplitude, MA) in all individuals but had no effect on clot time (R time). The intraassay variability (CVa<10%) for R time, angle, and MA suggests that these parameters reliably describe the dynamics of fibrin formation and degradation in whole blood. Our Tf reagent reproducibly induces coagulation, making it an ideal tool to quantify the processes that contribute to mechanical clot strength in whole blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号