首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We have previously identified two distinct NADH oxidases corresponding to H(2)O(2)-forming oxidase (Nox-1) and H(2)O-forming oxidase (Nox-2) induced in Streptococcus mutans. Sequence analyses indicated a strong similarity between Nox-1 and AhpF, the flavoprotein component of Salmonella typhimurium alkyl hydroperoxide reductase; an open reading frame upstream of nox-1 also showed homology to AhpC, the direct peroxide-reducing component of S. typhimurium alkyl hydroperoxide reductase. To determine their physiological functions in S. mutans, we constructed knockout mutants of Nox-1, Nox-2, and/or the AhpC homologue; we verified that Nox-2 plays an important role in energy metabolism through the regeneration of NAD(+) but Nox-1 contributes negligibly. The Nox-2 mutant exhibited greatly reduced aerobic growth on mannitol, whereas there was no significant effect of aerobiosis on the growth on mannitol of the other strains or growth on glucose of any of the strains. Although the Nox-2 mutants grew well on glucose aerobically, the end products of glucose fermentation by the Nox-2 mutant were substantially shifted to higher ratios of lactic acid to acetic acid compared with wild-type cells. The resistance to cumene hydroperoxide of Escherichia coli TA4315 (ahpCF-defective mutant) transformed with pAN119 containing both nox-1 and ahpC genes was not only restored but enhanced relative to that of E. coli K-12 (parent strain), indicating a clear function for Nox-1 as part of an alkyl hydroperoxide reductase system in vivo in combination with AhpC. Surprisingly, the Nox-1 and/or AhpC deficiency had no effect on the sensitivity of S. mutans to cumene hydroperoxide and H(2)O(2), implying that the existence of some other antioxidant system(s) independent of Nox-1 in S. mutans compensates for the deficiency.  相似文献   

2.
Legionella pneumophila expresses two catalase-peroxidase enzymes that exhibit strong peroxidatic but weak catalatic activities, suggesting that other enzymes participate in decomposition of hydrogen peroxide (H2O2). Comparative genomics revealed that L. pneumophila and its close relative Coxiella burnetii each contain two peroxide-scavenging alkyl hydroperoxide reductase (AhpC) systems: AhpC1, which is similar to the Helicobacter pylori AhpC system, and AhpC2 AhpD (AhpC2D), which is similar to the AhpC AhpD system of Mycobacterium tuberculosis. To establish a catalatic function for these two systems, we expressed L. pneumophila ahpC1 or ahpC2 in a catalase/peroxidase mutant of Escherichia coli and demonstrated restoration of H2O2 resistance by a disk diffusion assay. ahpC1::Km and ahpC2D::Km chromosomal deletion mutants were two- to eightfold more sensitive to H2O2, tert-butyl hydroperoxide, cumene hydroperoxide, and paraquat than the wild-type L. pneumophila, a phenotype that could be restored by trans-complementation. Reciprocal strategies to construct double mutants were unsuccessful. Mutant strains were not enfeebled for growth in vitro or in a U937 cell infection model. Green fluorescence protein reporter assays revealed expression to be dependent on the stage of growth, with ahpC1 appearing after the exponential phase and ahpC2 appearing during early exponential phase. Quantitative real-time PCR showed that ahpC1 mRNA levels were approximately 7- to 10-fold higher than ahpC2D mRNA levels. However, expression of ahpC2D was significantly increased in the ahpC1 mutant, whereas ahpC1 expression was unchanged in the ahpC2D mutant. These results indicate that AhpC1 or AhpC2D (or both) provide an essential hydrogen peroxide-scavenging function to L. pneumophila and that the compensatory activity of the ahpC2D system is most likely induced in response to oxidative stress.  相似文献   

3.
Reynolds CM  Meyer J  Poole LB 《Biochemistry》2002,41(6):1990-2001
Many eubacterial genomes including those of Salmonella typhimurium, Streptococcus mutans, and Thermus aquaticus encode a dedicated flavoprotein reductase (AhpF, Nox1, or PrxR) just downstream of the structural gene for their peroxiredoxin (Prx, AhpC) homologue to reduce the latter protein during turnover. In contrast, the obligate anaerobe Clostridium pasteurianum codes for a two-component reducing system upstream of the ahpC homologue. These three structural genes, herein designated cp34, cp9, and cp20, were previously identified upstream of the rubredoxin gene in C. pasteurianum, but were not linked to expression of the latter gene [Mathieu, I., and Meyer, J. (1993) FEMS Microbiol. Lett. 112, 223-227]. cp34, cp9, and cp20 have been expressed in Escherichia coli, and their products have been purified and characterized. Cp34 and Cp9 together catalyze the NADH-dependent reduction of Cp20 to effect the reduction of various hydroperoxide substrates. Cp34, containing noncovalently bound FAD and a redox-active disulfide center, is an unusual member of the low-M(r) thioredoxin reductase (TrxR) family. Like Escherichia coli TrxR, Cp34 lacks the 200-residue N-terminal AhpC-reducing domain present in S. typhimurium AhpF. Although Cp34 is more similar to TrxR than to AhpF in sequence comparisons of the nucleotide-binding domains, experiments demonstrated that NADH was the preferred reductant (Km = 2.65 microM). Cp9 (a distant relative of bacterial glutaredoxins) is a direct electron acceptor for Cp34, possesses a redox-active CXXC active site, and mediates the transfer of electrons from Cp34 to several disulfide-containing substrates including 5,5'-dithiobis(2-nitrobenzoic acid), insulin, and Cp20. These three proteins are proposed to play a vital role in the defense of C. pasteurianum against oxidative damage and may help compensate for the putative lack of catalase activity in this organism.  相似文献   

4.
Nox-1 from Streptococcus mutans, the bacteria which cause dental caries, was previously identified as an H2O2-forming reduced nicotinamide adenine dinucleotide (NADH) oxidase. Nox-1 is homologous with the flavoprotein component, AhpF, of Salmonella typhimurium alkyl hydroperoxide reductase. A partial open reading frame upstream of nox1, homologous with the other (peroxidase) component, ahpC, from the S. typhimurium system, was also identified. We report here the complete sequence of S. mutans ahpC. Analyses of purified AhpC together with Nox-1 have verified that these proteins act as a cysteine-based peroxidase system in S. mutans, catalyzing the NADH-dependent reduction of organic hydroperoxides or H2O2 to their respective alcohols and/or H2O. These proteins also catalyze the four-electron reduction of O2 to H2O2, clarifying the role of Nox-1 as a protective protein against oxygen toxicity. Major differences between Nox-1 and AhpF include: (i) the absolute specificity of Nox-1 for NADH; (ii) lower amounts of flavin semiquinone and a more prominent FADH2 to NAD+ charge transfer absorbance band stabilized by Nox-1; and (iii) even higher redox potentials of disulfide centers relative to flavin for Nox-1. Although Nox-1 and AhpC from S. mutans were shown to play a protective role against oxidative stress in vitro and in vivo in Escherichia coli, the lack of a significant effect on deletion of these genes from S. mutans suggests the presence of additional antioxidant proteins in these bacteria.  相似文献   

5.
6.
In the gastric pathogen Helicobacter pylori, catalase (KatA) and alkyl hydroperoxide reductase (AhpC) are two highly abundant enzymes that are crucial for oxidative stress resistance and survival of the bacterium in the host. Here we report a connection unidentified previously between the two stress resistance enzymes. We observed that the catalase in ahpC mutant cells in comparison with the parent strain is inactivated partially (approximately 50%). The decrease of catalase activity is well correlated with the perturbation of the heme environment in catalase, as detected by electron paramagnetic resonance spectroscopy. To understand the reason for this catalase inactivation, we examined the inhibitory effects of hydroperoxides on H. pylori catalase (either present in cell extracts or added to the purified enzyme) by monitoring the enzyme activity and the EPR signal of catalase. H. pylori catalase is highly resistant to its own substrate, without the loss of enzyme activity by treatment with a molar ratio of 1:3000 H2O2. However, it inactivated is by lower concentrations of organic hydroperoxides (the substrate of AhpC). Treatment with a molar ratio of 1:400 t-butyl hydroperoxide resulted in an inactivation of catalase by approximately 50%. UV-visible absorption spectra indicated that the catalase inactivation by organic hydroperoxides is caused by the formation of a catalytically incompetent compound II species. To further support the idea that organic hydroperoxides, which accumulate in the ahpC mutant cells, are responsible for the inactivation of catalase, we compared the level of lipid peroxidation found in ahpC mutant cells with that found in wild type cells. The results showed that the total amount of extractable lipid hydroperoxides in the ahpC mutant cells is approximately three times that in the wild type cells. Our findings reveal a novel role of the organic hydroperoxide detoxification system in preventing catalase inactivation.  相似文献   

7.
8.
Alkyl hydroperoxide reductase (ahpC) and organic hydroperoxide resistance (ohr) are distinct genes, structurally and regulatory, but have similar physiological functions. In Xanthomonas campestris pv. phaseoli inactivation of either gene results in increased sensitivity to killing with organic peroxides. An ahpC1-ohr double mutant was highly sensitive to both growth inhibition and killing treatment with organic peroxides. High level expression of ahpC or ohr only partially complemented the phenotype of the double mutant, suggesting that these genes function synergistically, but through different pathways, to protect Xanthomonas from organic peroxide toxicity. Functional analyses of Ohr and AhpC abilities to degrade organic hydroperoxides revealed that both Ohr and AhpC could degrade tert-butyl hydroperoxide (tBOOH) while the former was more efficient at degrading cumene hydroperoxide (CuOOH). Expression analysis of these genes in the mutants showed no compensatory alterations in the levels of AhpC or Ohr. However, CuOOH induced expression of these genes in the mutants was affected. CuOOH induced ahpC expression was higher in the ohr mutant than in the parental strain; in contrast, the ahpC mutation has no effect on the level of induced ohr expression. These analyses reveal complex physiological roles and expression patterns of seemingly functionally similar genes.  相似文献   

9.
Mycobacterium tuberculosis is a natural mutant with inactivated oxidative stress regulatory gene oxyR. This characteristic has been linked to the exquisite sensitivity of M. tuberculosis to isonicotinic acid hydrazide (INH). In the majority of mycobacteria tested, including M. tuberculosis, oxyR is divergently transcribed from ahpC, a gene encoding a homolog of the subunit of alkyl hydroperoxide reductase that carries out substrate peroxide reduction. Here we compared ahpC expression in Mycobacterium smegmatis, a mycobacterium less sensitive to INH, with that in two highly INH sensitive species, M. tuberculosis and Mycobacterium aurum. The ahpC gene of M. smegmatis was cloned and characterized, and the 5' ends of ahpC mRNA were mapped by S1 nuclease protection analysis. M. smegmatis AhpC and eight other polypeptides were inducible by exposure to H2O2 or organic peroxides, as determined by metabolic labeling and Western blot (immunoblot) analysis. In contrast, M. aurum displayed differential induction of only one 18-kDa polypeptide when exposed to organic peroxides. AhpC could not be detected in this organism by immunological means. AhpC was also below detection levels in M. tuberculosis H37Rv. These observations are consistent with the interpretation that ahpC expression and INH sensitivity are inversely correlated in the mycobacterial species tested. In further support of this conclusion, the presence of plasmid-borne ahpC reduced M. smegmatis susceptibility to INH. Interestingly, mutations in the intergenic region between oxyR and ahpC were identified and increased ahpC expression observed in deltakatG M. tuberculosis and Mycobacterium bovis INH(r) strains. We propose that mutations activating ahpC expression may contribute to the emergence of INH(r) strains.  相似文献   

10.
11.
12.
The antioxidant mechanism of ebselen involves recently discovered reductions by mammalian thioredoxin reductase (TrxR) and thioredoxin (Trx) forming ebselen selenol. Here we describe a previously unknown reaction; ebselen reacts with its selenol forming an ebselen diselenide with a rate constant of 372 m(-1)s(-1). The diselenide also was a substrate of TrxR forming the selenol with K(m) of 40 microm and k(cat) of 79 min(-1) (k(cat)/K(m) of 3.3 x 10(4) m(-1)s(-1)). Trx increased the reduction because of its fast reaction with diselenide (rate constant 1.7 x 10(3) m(-1)s(-1)). Diselenide stimulated the H2O2 reductase activity of TrxR, even more efficiently with Trx present. Because the mechanism of ebselen as an antioxidant has been assumed to involve glutathione peroxidase-like activity, we compared the H2O2 reductase activity of ebselen with the GSH and Trx systems. TrxR at 50 nm, far below the estimated physiological level, gave 8-fold higher activity compared with 1 mm GSH; addition of 5 microm Trx increased this difference to 13-fold. The rate constant of ebselen selenol reacting with H2O2 was estimated to be faster than 350 m(-1)s(-1). We propose novel mechanisms for ebselen antioxidant action involving ebselen selenol and diselenide formation, with the thioredoxin system rather than glutathione as the predominant effector and target.  相似文献   

13.
Motexafin gadolinium (MGd) is a chemotherapeutic drug that selectively targets tumor cells and mediates redox reactions generating reactive oxygen species. Thioredoxin (Trx), NADPH, and thioredoxin reductase (TrxR) of the cytosol/nucleus or mitochondria are major thiol-dependent reductases with many functions in cell growth, defense against oxidative stress, and apoptosis. Mammalian TrxRs are selenocysteine-containing flavoenzymes; MGd was an NADPH-oxidizing substrate for human or rat TrxR1 with a Km value of 8.65 microM (kcat/Km of 4.86 x 10(4) M(-1) s(-1)). The reaction involved redox cycling of MGd by oxygen producing superoxide and hydrogen peroxide. MGd acted as a non-competitive inhibitor (IC50 of 6 microM) for rat TrxR. In contrast, direct reaction between MGd and reduced human Trx was negligible. The corresponding reaction with reduced Escherichia coli Trx was also negligible, but MGd was a better substrate (kcat/Km of 2.23 x 10(5) M(-1) s(-1)) for TrxR from E. coli and a strong inhibitor of Trx-dependent protein disulfide reduction. Ribonucleotide reductase (RNR), a 1:1 complex of the non-identical R1- and R2-subunits, catalyzes the essential de novo synthesis of deoxyribonucleotides for DNA synthesis using electrons from Trx and TrxR. MGd inhibited recombinant mouse RNR activity with either 3 microM reduced human Trx (IC50 2 microM) or 4 mM dithiothreitol (IC50 6 microM) as electron donors. Our results demonstrate MGd-induced enzymatic generation of reactive oxygen species by TrxR plus a powerful inhibition of RNR. This may explain the effects of the drug on cancer cells, which often overproduce TrxR and have induced RNR for replication and repair.  相似文献   

14.
The mammalian cytosolic/nuclear thioredoxin system, comprising thioredoxin (Trx), selenoenzyme thioredoxin reductase (TrxR), and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. The active site of reduced Trx comprises Cys(32)-Gly-Pro-Cys(35) thiols that catalyze target disulfide reduction, generating a disulfide. Human Trx1 has also three structural Cys residues in positions 62, 69, and 73 that upon diamide oxidation induce a second Cys(62)-Cys(69) disulfide as well as dimers and multimers. We have discovered that after incubation with H(2)O(2) only monomeric two-disulfide molecules are generated, and they are inactive but able to regain full activity in an autocatalytic process in the presence of NADPH and TrxR. There are conflicting results regarding the effects of S-nitrosylation on Trx antioxidant functions and which residues are involved. We found that S-nitrosoglutathione-mediated S-nitrosylation at physiological pH is critically dependent on the redox state of Trx. Starting from fully reduced human Trx, both Cys(69) and Cys(73) were nitrosylated, and the active site formed a disulfide; the nitrosylated Trx was not a substrate for TrxR but regained activity after a lag phase consistent with autoactivation. Treatment of a two-disulfide form of Trx1 with S-nitrosoglutathione resulted in nitrosylation of Cys(73), which can act as a trans-nitrosylating agent as observed by others to control caspase 3 activity (Mitchell, D. A., and Marletta, M. A. (2005) Nat. Chem. Biol. 1, 154-158). The reversible inhibition of human Trx1 activity by H(2)O(2) and NO donors is suggested to act in cell signaling via temporal control of reduction for the transmission of oxidative and/or nitrosative signals in thiol redox control.  相似文献   

15.
Several studies have demonstrated a correlation between cellular toxicity of cis-diamminedichloroplatinum (II) (cisplatin, CDDP) and inhibited intracellular activity of the thioredoxin system, i.e., thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH. Conversely, increased cellular activity of the Trx system confers resistance to CDDP. In this study, we have analyzed the interaction of CDDP with Trx and TrxR in order to clarify the mechanism. The inhibition with time-dependent kinetics by CDDP of NADPH-reduced (but not oxidized) TrxR was irreversible, strongly suggesting covalent modification of the reduced selenocysteine-containing active site. Assuming second order kinetics, the rate constant of TrxR inhibition by CDDP was 21 +/- 3 M(-1) x s(-1). Transplatin was found to be an even more efficient inhibitor, with a second order rate constant of 84 +/- 22 M(-1) x s(-1), whereas carboplatin (up to 1 mM) gave no inhibition of the enzyme under the same conditions. Escherichia coli Trx or human or bacterial glutaredoxin (Grx) activities were in comparison only slightly or not at all inhibited by either CDDP, transplatin, or carboplatin. However, glutaredoxins were found to be inhibited by the purified glutathione adduct of cisplatin, bis-(glutathionato)platinum(II) (GS-Platinum complex, GS-Pt), with an IC50 = 350 microM in the standard beta-hydroxyethyl disulfide-coupled assay for human Grx. Also the mammalian Trx system was inhibited by GS-Pt with similar efficiency (IC(50) = 325 microM), whereas neither the E. coli Trx system nor glutathione reductase were inhibited. Formation of GS-Pt is a major route for cellular elimination of CDDP. The fact that GS-Pt inhibits the mammalian Trx as well as Grx systems shows that CDDP may exert effects at several stages of its metabolism, including after conjugation with GSH, which are intimately linked with the cellular disulfide/dithiol redox regulatory systems.  相似文献   

16.
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for alkyl peroxide metabolism. A Xanthomonas ahpC mutant was constructed. The mutant had increased sensitivity to organic peroxide killing, but was unexpectedly hyperresistant to H(2)O(2) killing. Analysis of peroxide detoxification enzymes in this mutant revealed differential alteration in catalase activities in that its bifunctional catalase-peroxidase enzyme and major monofunctional catalase (Kat1) increased severalfold, while levels of its third growth-phase-regulated catalase (KatE) did not change. The increase in catalase activities was a compensatory response to lack of AhpC, and the phenotype was complemented by expression of a functional ahpC gene. Regulation of the catalase compensatory response was complex. The Kat1 compensatory response increase in activity was mediated by OxyR, since it was abolished in an oxyR mutant. In contrast, the compensatory response increase in activity for the bifunctional catalase-peroxidase enzyme was mediated by an unknown regulator, independent of OxyR. Moreover, the mutation in ahpC appeared to convert OxyR from a reduced form to an oxidized form that activated genes in the OxyR regulon in uninduced cells. This complex regulation of the peroxide stress response in Xanthomonas differed from that in other bacteria.  相似文献   

17.
We have identified and characterized a 14-kDa human thioredoxin (Trx)-related protein designated TRP14. This cytosolic protein was expressed in all tissues and cell types examined, generally in smaller amounts than Trx1. Although TRP14 contains five cysteines, only the two Cys residues in its WCPDC motif were exposed and redox sensitive. Unlike Trx1, which was an equally good substrate for both Trx reductase 1 (TrxR1) and TrxR2, oxidized TRP14 was reduced by TrxR1 but not by TrxR2. Biochemical characterization of TRP14 suggested that, like Trx1, TRP14 is a disulfide reductase; its active site cysteine is sufficiently nucleophilic with the pK(a) value of 6.1; and its redox potential (-257 mV) is similar to those of other cellular thiol reductants. However, although TRP14 reduced small disulfide-containing peptides, it did not reduce the disulfides of known Trx1 substrates, ribonucleotide reductase, peroxiredoxin, and methionine sulfoxide reductase. These results suggest that TRP14 and Trx1 might act on distinct substrate proteins.  相似文献   

18.
19.
Alkyl hydroperoxide reductase in Streptococcus mutans consists of two components, Nox-1 and AhpC. Deletion of nox-1 and ahpC in a double mutant as well as the wild-type of Streptococcus mutans can form colonies in the presence of air to the same extent. The evidence suggested the presence of some other antioxidant system(s) independent of the Nox-1/AhpC system in the bacterium. Here we identified a new antioxidant gene (dpr) and the gene product (Dpr) which complements the defect of peroxidase activity caused by the deletion of nox-1 and ahpC in S. mutans. The dpr-disruption mutant of S. mutans could form colonies anaerobically but not aerobically.  相似文献   

20.
We have previously identified and characterized the alkyl hydroperoxide reductase of Streptococcus mutans, which consists of two components, Nox-1 and AhpC. Deletion of both nox-1 and ahpC had no effect on the sensitivity of S. mutans to cumene hydroperoxide or H(2)O(2), implying that the existence of another antioxidant system(s) independent of the Nox-1-AhpC system compensates for the deficiency. Here, a new antioxidant gene (dpr for Dps-like peroxide resistance gene) was isolated from the S. mutans chromosome by its ability to complement an ahpCF deletion mutant of Escherichia coli with a tert-butyl hydroperoxide-hypersensitive phenotype. The dpr gene complemented the defect in peroxidase activity caused by the deletion of nox-1 and ahpC in S. mutans. Under aerobic conditions, the dpr disruption mutant carrying a spectinomycin resistance gene (dpr::Spc(r) mutant) grew as well as wild-type S. mutans in liquid medium. However, the dpr::Spc(r) mutant could not form colonies on an agar plate under air. In addition, neither the dpr::Spc(r) ahpC::Em(r)::nox-1 triple mutant nor the dpr::Spc(r) sod::Em(r) double mutant was able to grow aerobically in liquid medium. The 20-kDa dpr gene product Dpr is an iron-binding protein. Synthesis of Dpr was induced by exposure of S. mutans cells to air. We propose a mechanism by which Dpr confers aerotolerance on S. mutans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号