首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Sepharose 4B affinity chromatography of Trichosanthes anguina seed extract and subsequent elution with galactose resulted in the isolation of an apparently single lectin with molecular weight of 45,000 +/- 700. However, major amount of the hemagglutinating activity was recovered as unadsorbed protein fraction. High affinity matrix Lactamyl Seralose could retain most of the galactose specific lectin activity from fraction 'A' which was eluted with lactose. It is evident from PAGE and SDS-PAGE analysis of the purified protein that T. anguina seeds contains a mixture of isolectins ranging in molecular weight from 30,000 to 50,000 +/- 1300. Periodic Acid Schiff's staining of the gels revealed this lectin complex to be a combination of glycosylated and non-glycosylated lectins. Two Isolectins SLc and IEL from within this complex have been isolated by affinity and ion exchange chromatography respectively. Apparent homology of these two lectins is indicated by their identical molecular weight (45 kDa), sub unit composition, non glycoprotein nature and immunological identity. However, these two lectins show minor differences in their biological and physicochemical properties. The peptide maps of the two lectins obtained after digestion with Trypsin and Pronase E also indicate minor changes in the primary structure.  相似文献   

2.
Only a few animal phyla have been screened for the presence and distribution of lectins. Probably the most intensively studied group is the mollusk. In this investigation, 22 species from 12 families of tropical sponges collected in Los Roques National Park (Venezuela) were screened for the presence of lectins. Nine saline extracts exhibited strong hemagglutinating activity against pronase-treated hamster red blood cells; five of these reacted against rabbit red blood cells, four with trypsin-treated bovine red blood cells, and five with human red blood cells regardless of the blood group type. Extracts from the three species studied from genus Aplysina (archeri, lawnosa, and cauliformis) were highly reactive and panagglutinating against the panel of red blood cells tested. The lectins from A. archeri and A. lawnosa were purified to homogeneity by ammonium sulfate fractionation, affinity chromatography on p-aminobenzyl-beta-1-thiogalactopyranoside-agarose, and gel filtration chromatography. Both lectins exhibited a native molecular mass of 63 kDa and by SDS-polyacrylamide gel electrophoresis under reducing conditions have an apparent molecular mass of 16 kDa, thus suggesting they occur as homotetramers. The purified lectins contain 3-4 mol of divalent cation per molecule, which are essential for their biological activity. Hapten inhibition of hemagglutination was carried out to define the sugar binding specificity of the purified A. archeri lectin. The results indicate a preference of the lectin for nonreducing beta-linked d-Gal residues being the best inhibitors of red blood cells binding methyl-beta-d-Gal and thiodigalactoside (Gal beta 1-4-thiogalactopyranoside). The behavior of several glycans on immobilized lectin affinity chromatography confirmed and extended the specificity data obtained by hapten inhibition.  相似文献   

3.
A galactose specific lectin was isolated from the seeds of Ficus bengalensis (Moraceae) fruits and designated as F. bengalensis agglutinin (FBA). The lectin was purified by affinity repulsion chromatography on fetuin-agarose and was a monomer of molecular mass 33kDa. Like other Moraceae family lectins, carbohydrate-binding activity of FBA was independent of any divalent cation. FBA did not bind with simple saccharides, however sugar ligands with aromatic aglycons showed pronounced binding. The combining site of FBA recognized preferably Galbeta1,4GlcNAcbeta1-(II) followed by Galbeta1,3GalNAcalpha1-(Talpha) containing glycotopes. Interaction with saccharides revealed that the combining site of FBA could well accommodate a tetrasaccharide, asialo GM1 glycan (Galbeta1,3GalNAcbeta1,4Galbeta1,4Glcbeta1-), whereas polyvalent Tn (GalNAcalpha1-Ser/Thr), one of the well-recognized ligands of Moraceae family lectin, did not interact well with FBA.  相似文献   

4.
Ricinus communis agglutinin I (RCA120) is considered a versatile tool for the detection of galactose-containing oligosaccharides. However, possible contamination by the highly toxic isolectin 'ricin' has become a critical issue for RCA120's continued use. From a practical viewpoint, it is necessary to find an effective substitute for RCA120. For this purpose, we examined by means of frontal affinity chromatography over 100 lectins which have similar sugar-binding specificities to that of RCA120. It was found that Erythrina cristagalli lectin (ECL) showed the closest similarity to RCA120. Both lectins prefer Gal beta1-4GlcNAc (type II) to Gal beta1-3GlcNAc (type I) structures, with increased affinity for highly branched N-acetyllactosamine-containing N-glycans. Their binding strength significantly decreased following modification of the 3-OH, 4-OH and 6-OH of the galactose moiety of the disaccharide, as well as the 3-OH of its N-acetylglucosamine residue. Several differences were also observed in the affinity of the two lectins for various other ligands, as well as effects of bisecting GlcNAc and terminal sialylation. Although six other Erythrina-derived lectins have been reported with different amino acid sequences, all showed quite similar profiles to that of ECL, and thus, to RCA120. Erythrina lectins can therefore serve as effective substitutes for RCA120, taking the above differences into consideration.  相似文献   

5.
Fish eggs are known as a rich source of lectins. In this study we purified and characterized a lectin from unfertilized Katsuwonus pelamis hard roe. K. pelamis lectin (KPL) was purified by separation into two fractions above and below the molecular weight of 10kDa using ultramembrane, gel filtration on a Sephadex G-100, and affinity chromatography on an asialofetuin-Sepharose 4B. KPL is a glycoprotein of 140kDa, composed mainly of aspartic acid, glycine, phenylalanine, glutamic acid, threonine and serine residues. Analysis of the carbohydrate composition by gas-liquid chromatography indicated that carbohydrates constituted 14% of the total weight and this 14% is comprised of mannose, galactose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, fucose, arabinose and sialic acid. The lectin is comprised of four subunits. These subunits have a molecular mass corresponding to 35kDa. KPL specifically agglutinated human blood type A erythrocytes and, in a hemagglutination inhibitory test, the potent inhibitors were D-galactose, lactose, lactosamine, asialofetuin, N-acetyl-D-galactosamine, O-serinyl-2-acetamido-2-deoxy-alpha-D-galactopyranoside and O-serinyl-2-acetamido-2-deoxy-beta-D-galactopyranoside (O-serinyl-beta-D-GalNAc). The first 10 residues of the N-terminal region were determined as PVELCDAKCT. Furthermore it was determined that the hemagglutinating activity of KPL was dependent on divalent metal cations and that the optimum activity of KPL was exhibited at 40 degrees C and pH 6.0-8.5 in the presence of Ca2+.  相似文献   

6.
Four lectins were purified from a mushroom (Agaricus bisporus) by ammonium sulfate fractionation, anion-exchange chromatography, affinity chromatography on bovine submaxillary mucin-Sepharose 4B and preparative isoelectric focusing. They were designated as ABA-I (pI 6.70), II (pI 5.98), III (pI 5.69) and IV (pI 5.53). Polyacrylamide gel electrophoresis of each lectin in the presence of sodium dodecyl sulfate gave a single band with an apparent molecular mass of 16 000 Da. Sedimentation equilibrium analysis suggested that each lectin is a tetramer of subunits. The four lectins were found to have quite similar carbohydrate-binding specificities. The hemagglutination activities of the lectins were effectively inhibited by bovine and porcine submaxillary mucins (BSM and PSM), and NH2-terminal glyco-octapeptides obtained by cyanogen bromide cleavage of human erythrocyte glycophorin A. In addition, desialylated PSM-glycopeptides were more potent inhibitors than untreated PSM-glycopeptides. Among monosaccharides and their glycosides, only methyl N-acetyl-alpha-galactosaminide inhibited lectin binding at a high concentration, but a synthetic oligosaccharide, O-beta-galactopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-alpha-D- galactopyranosyl)-N-tosyl-L-serine, was a strong inhibitor.  相似文献   

7.
Mistletoe (Viscum album) lectins, which are classified as a type II ribosome-inactivating protein (RIP) due to their unique biological function and the potential medical and therapeutic application in cancer cells, receive a rising attention. The heterodimeric glycoproteins contain the Achain with catalytic activity and the B-chain with sugar binding properties. In recent years, studies involving the lectins from the white berry European mistletoe (Viscum album) and the yellow berry Korean mistletoe (Viscum album coloratum) have been described. However, the detailed mechanism in exerting unique cytotoxic effect on cancer cells still remains unclear. Here, we aim to understand and define the molecular basis and biological effects of the type II RIPs, through the studies of the recombinant Korean mistletoe lectin. To this end, we expressed, purified the recombinant Korean mistletoe lectin (rKML), and investigated its molecular characteristics in vitro, its cytotoxicity and ability to induce apoptotic cell death in cancer cells. To gain structural basis for its catalytic activity and sugar binding properties, we performed homology modeling studies based on the high degree of sequence identity and conserved secondary structure prediction between Korean and European, Himalayan mistletoe lectins, and Ricin.  相似文献   

8.
Carbohydrate binding specificity of the galactose-specific, major lectin of mistletoe extract (ML-1) was studied by an inhibition assay using monosaccharides, monosaccharide derivatives, disaccharides, and compounds containing multiple galactosyl terminals. The results indicate that 1) both alpha- and beta-galactosyl residues are recognized equally well; 2) each of the hydroxyl groups of galactose contributes to varying degrees to the binding process, the 4-OH being the most important and the 6-OH the least important hydroxyl group; 3) disaccharide sequences of Gal beta 2Gal and Gal beta 3Gal have much higher affinity than galactose, whereas affinity of all other Gal-disaccharides is only slightly better than galactose; 4) macromolecular ligands having 10 or more terminal galactosyl residues have 500-fold higher affinity than Gal; and 5) a group on ML-1 with pK alpha of 4.8 appears to be involved in the binding of ligand.  相似文献   

9.
The sugar-binding specificities of C-type lectins isolated from marine invertebrates were investigated by frontal affinity chromatography (FAC) using 100 oligosaccharides. The lectins included BRA-2 and BRA-3, multiple lectins from the hemolymph of the acorn barnacle, Megabalanus rosa, and BRL from the acorn barnacle, Balanus rostatus. The diverse sugar-binding specificities of the C-type lectins were determined by FAC analysis. BRA-2 recognized alpha2-6 sialylation but not alpha2-3 sialylation on glycans. On the other hand, BRA-3 showed high affinity for oligosaccharides with alpha-linked non-reducing terminal galactose, but not for sialylated forms, and BRL showed enhanced recognition activity towards Lewis(x) and Lewis(a) epitopes.  相似文献   

10.
H Franz  P Ziska    A Kindt 《The Biochemical journal》1981,195(2):481-484
Three lectins have been isolated from an extract of mistletoe (Viscum album) by affinity chromatography on partially hydrolysed Sepharose and human immunoglobulin- Sepharose. The lectins differ in molecular weight and sugar specificity (lectin I, mol.wt. 11500, D-galactose-specific; lectin II, mol.wt. 60000, both D-galactose- and N-acetyl-D-galactosamine-specific; lectin III, mol. wt. 50000, N-acetyl-D-galactosamine-specific). All three lectins react with human erythrocytes without specificity for the A, B, and O blood groups. In contrast with abrin and ricin the mistletoe lectins cannot be divided into "toxins" and "haemagglutinins".  相似文献   

11.
Insects depend on lectins for non‐self recognition and clearance of invading pathogens. Naturally occurring lectin showing specificity for galactose was purified from the serum of lepidopteran pest Parasa lepida by affinity chromatography using Sepharose 6B coupled with galactose as a gel matrix. Preliminary studies on crude serum agglutinin revealed that the agglutinin molecule showed varying degrees of specificity to avian and mammalian red blood cells tested. Among them, the highest titer of 128 was recorded against rabbit red blood cell type. The agglutinin molecule in the crude serum was stable up to 60°C and at pH between 6 and 9. Also, the hemagglutinating activity was neither dependent on divalent cations nor sensitive to ethylenediaminetetraacetic acid treatment. Galactose inhibited the hemagglutinating activity at minimum inhibitory concentration of 12.5 mM and hence it was used as a ligand for affinity chromatography. Native polyacrylamide gel electrophoresis analysis revealed a single band and the molecular weight of the lectin was found to be approximately 90 kDa. Bacterial agglutination activity of the purified lectin with two significant toxin bacteria, namely Salmonella typhi and Bacillus thuringiensis, was observed.  相似文献   

12.
The effects of two lectins concanavalin A (conA) and soybean agglutinin, on soybean seed acid phosphatase activity were investigated using p-nitrophenylphosphate (pNPP), pyrophosphate (PPi) and phosphoenolpyruvate (PEP) as substrates. Of the four acid phosphatase isoforms (AP1, AP2, AP3A and AP3B) purified from soybean seeds, only AP1 was activated 40 and 60% by conA and soybean agglutinin, respectively. Both lectins affected some of the kinetic parameters of AP1. The activation by lectins was not affected by 1 mM Ca2+ or Mn2+ but glucose and methylmannopyranoside (100 mM) prevented activation by conA. Under the same conditions, galactose had no effect. These results suggest that plant acid phosphatases may be regulated by lectins, the effects vary according to the substrate used.  相似文献   

13.
14.
Articulatin-D, a 66 kDa ribosome inactivating protein (RIP) comprised of 29 kDa A-chain linked to 35 kDa B-chain, is purified from leafless mistletoe (Viscum articulatum) parasitic on Dalbergia sp. from Western Ghats (India). N-terminal sequence and LC-MS/MS analyses of A- and B-chain confirmed that articulatin-D is a type-2 RIP having high homology with other mistletoe lectins. Translation inhibition and diagnostic N-glycosidase activity of articulatin-D illustrate the presence of catalytically active A-chain. Its inability to: (i) bind to acid treated Sepharose CL-6B column, (ii) agglutinate trypsin-treated and untreated RBCs of human (A, B, O, AB), mice, rat, rabbit, buffalo, porcine, pigeon, cock, fish, sheep and goat even with 10 mg/ml of purified articulatin-D, (iii) show change in circular dichroism spectra after addition of sugar to the native protein, (iv) bind to different sugars (galactose, lactose, gal-NAc, rhamnose, arabinose, fucose and mannose) immobilized on Sepharose 4B matrix, and (v) show change in enthalpy during titration with galactose confirm that the B-chain of articulatin-D lacks sugar binding activity. Despite this, articulatin-D is highly toxic as characterized with low IC50 against different cancer cell lines (Jurkat: 0.31 ± 0.02 nM, MOLT-4: 0.51 ± 0.03 nM, U-937: 0.64 ± 0.07 nM, HL-60: 0.79 ± 0.11 nM, Raji: 1.45 ± 0.09 nM). Toxicity of RIPs has been ascribed to the absence/presence of B-chain with sugar binding activity. Identification of articulatin-D, the first cytotoxic RIP with B-chain lacking sugar binding activity opens new vistas in understanding cytotoxic action of RIPs.  相似文献   

15.
A new lectin (BvcL) from seeds of a primitive Brazilian Caesalpinoideae, the Bauhinia variegata candida was purified and biochemical characterized. BvcL was isolated by gel filtration chromatography on Sephadex G75 and affinity chromatography on immobilized d-lactose column. SDS-PAGE showed that BvcL under non-reducing condition presents two bands of 68 and 32 kDa and a single band of 32 kDa in reducing condition. However, only one band was seen in native PAGE. The hemagglutination activity of BvcL was not specific for any human blood group trypsin-treated erythrocytes. Carbohydrate inhibition analysis indicated that BvcL is inhibited by lactose, galactose, galactosamine and other galactoside derivates. Amino acid analysis revealed a large content of Ser, Gly, Thr, Asp and Glu and low concentrations of Met, Cys and His. Intrinsic fluorescence of BvcL was not significantly affected by sugar binding galactose; and aromatic-region CD is unusually high for plant lectins. The N-terminal amino acid sequence of 17 residues showed 90% sequential homology to galactose-specific legume lectins of the subfamily Caesalpinoideae.  相似文献   

16.
Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin.   总被引:2,自引:0,他引:2  
Host cell invasion by Toxoplasma gondii is a multistep process with one of the first steps being the apical release of micronemal proteins that interact with host receptors. We demonstrate here that micronemal protein 1 (MIC1) is a lactose-binding lectin. MIC1 and MIC4 were recovered in the lactose-eluted (Lac(+)) fraction on affinity chromatography on immobilized lactose of the soluble antigen fraction from tachyzoites of the virulent RH strain. MIC1 and MIC4 were both identified by N-terminal microsequencing. MIC4 was also identified by sequencing cDNA clones isolated from an expression library following screening with mouse polyclonal anti-60/70 kDa (Lac(+) proteins) serum. This antiserum localized the Lac(+) proteins on the apical region of T. gondii tachyzoites by confocal microscopy. The Lac(+) fraction induced hemagglutination (mainly type A human erythrocytes), which was inhibited by beta-galactosides (3 mM lactose and 12 mM galactose) but not by up to 100 mM melibiose (alpha-galactoside), fucose, mannose, or glucose or 0.2 mg/ml heparin. The lectin activity of the Lac(+) preparation was attributed to MIC1, because blotted MIC1, but not native MIC4, bound human erythrocyte type A and fetuin. The copurification of MIC1 and MIC4 may have been due to their association, as reported by others. These data suggest that MIC1 may act through its lectin activity during T. gondii infection.  相似文献   

17.
Blackgram (Vigna mungo L. Hepper)seeds contain two galactose-specific lectins, BGL-I and BGL-II. BGL-I was partially purified into two monomeric lectins which were designated as BGL-I-1 (94 kDa) and BGL-I-2 (89 kDa). BGL-II is a monomeric lectin of 83 kDA. The purified lectins were associated with galactosidase activities. BGL-I-1 and BGL-II were copurified with α-galactosidase activity while BGL-I-2 was largely associated with β-galactosidase activity. These lectins agglutinate trypsin treated rabbit erythrocytes, but not the human erythrocytes of A, B or O groups. They were stable between pH 3·5 and 7·5 for their agglutination. The lectins did not show any metalion requirement. They were inactivated at 50°C. The lectin activity was inhibited by D-galactose (0·1 mM). The Scatchard plots of galactose binding to these lectins are nonlinear and biphasic curves indicative of multiple binding sites. The data show that the monomeric lectins have both lectin and galactosidase activities suggestive of a bifunctional protein.  相似文献   

18.
Vinorama isolectins (VL2-VL4) were purified from seeds of Acacia constricta (vinorama) using affinity chromatography on a fetuin-fractogel column followed by cationic-exchange chromatography. Each isolectin fraction presented a characteristic isoelectric point range from 5.5 to 8.4. Under native conditions, VL containing fractions migrated as tetramers of 133 kDa, while in SDS-PAGE, in presence of 2-mercaptoethanol, a single subunit band with M(r) of 34 kDa was observed. VL was found to be a glycoprotein with a 7.5% neutral sugar content. Antibodies to Phaseolus vulgaris lectins PHA and other wild legume lectins as Olneya tesota (palo fierro) PF2 and PF3, and Parkinsonia aculeate (palo verde) PV reacted with VL, but not with anti Glycine max agglutinin SBA or anti Lotus tetragonolobus agglutinin LTA. Furthermore, direct analysis of VL peptides showed sequences homologous to those reported in different lectins of the Phaseolus genus. VL2-VL4 did not have ABO serological or simple sugar specificity, but were inhibited by complex carbohydrates from fetuin and thyroglobulin. Asialofetuin carbohydrates strongly interacted with VL4 and VL3. Vinorama isolectins could be classified as "complex lectins".  相似文献   

19.
The supernatant from cultures of haemocytes of the compound ascidian Botryllus schlosseri incubated with zymosan (conditioned medium; CM) can enhance yeast phagocytosis by Botryllus blood cells. It contains molecules recognised by antibodies raised against the mammalian pro-inflammatory cytokines IL-1-α and TNF-α which appear as a single band of 60 kDa in immunoblot analysis. The effects on phagocytosis are abolished by the presence of sugars, such as galactose and rhamnose, sharing the same hydroxyl group configuration at C2 and C4. The same sugars also inhibit the haemagglutinating activity of the CM, suggesting the presence of lectins with opsonic activity. With immunoblot analysis, we confirmed the presence, in CM, of B. schlosseri rhamnose-binding lectins (BsRBLs), recently identified and characterised by our team, as a single electrophoretic band of 37 kDa. We had already demonstrated that these molecules are synthesised and secreted by activated phagocytes. Since previous studies have demonstrated that cytotoxic morula cells, and not phagocytes, are the haemocytes responsible for the release of molecules recognised by anti-cytokine antibodies, we propose a new scenario in which morula cells act as sentinels, able to sense foreign molecules and release immunomodulatory factors which induce phagocytes to secrete lectins able to enhance phagocytosis by acting as bridges between foreign particles and phagocyte surfaces.  相似文献   

20.
A lectin from the seeds of Crotalaria pallida (CPL), with an apparent molecular mass of 30 kDa, determined by SDS-polyacrylamide gel electrophoresis, showed human type A and B erythrocytes agglutination activity, which is inhibited by raffinose and galactose. The lectin requirement for divalent cation was demonstrated with EDTA/EGTA blocking hemagglutination activity. Although the N-terminal amino acid sequence of CPL is identical to another lectin from Crotalaria striata, which is taxonomically synonymous to Crotalaria pallida, these lectins differ in amino acid composition and hemagglutination properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号