首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.  相似文献   

2.
Corn stover (CS) was hydrothermally pretreated using CH3COOH (0.3 %, v/v), and subsequently its ability to be utilized for conversion to ethanol at high-solids content was investigated. Pretreatment conditions were optimized employing a response surface methodology (RSM) with temperature and duration as independent variables. Pretreated CS underwent a liquefaction/saccharification step at a custom designed free-fall mixer at 50 °C for either 12 or 24 h using an enzyme loading of 9 mg/g dry matter (DM) at 24 % (w/w) DM. Simultaneous enzymatic saccharification and fermentation (SSF) of liquefacted corn stover resulted in high ethanol concentration (up to 36.8 g/L), with liquefaction duration having a negligible effect. The threshold of ethanol concentration of 4 % (w/w), which is required to reduce the cost of ethanol distillation, was surpassed by the addition of extra enzymes at the start up of SSF achieving this way ethanol titer of 41.5 g/L.  相似文献   

3.
In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.  相似文献   

4.
The thermotolerant strain Saccharomyces cerevisiae DQ1 was applied to the simultaneous saccharification and fermentation (SSF) at high temperature and high solids loading of the dilute acid-pretreated corn stover in the present study. The SSF using S. cerevisiae DQ1 was operated at 30?% solids loading of the pretreated corn stover with three-step SSF mode and achieved up to ethanol titer of 48?g/L and yield of 65.6?%. S. cerevisiae DQ1 showed strong thermotolerance in both the regular one-step SSF and the three-step SSF with changing temperature in each step. The three-step SSF at 40°C using S. cerevisiae DQ1 tolerated the greater cellulase dosage and solids loading of the pretreated corn stover and resulted in increased ethanol production. The present study provided a practical potential for the future SSF of lignocellulose feedstock at high temperature to reach high ethanol titer.  相似文献   

5.

Background

Simultaneous saccharification and fermentation (SSF) is a promising process for bioconversion of lignocellulosic biomass. High glucan loading for hydrolysis and fermentation is an efficient approach to reduce the capital costs for bio-based products production. The SSF of steam-exploded corn stover (SECS) for ethanol production at high glucan loading and high temperature was investigated in this study.

Results

Glucan conversion of corn stover biomass pretreated by steam explosion was maintained at approximately 71 to 79% at an enzyme loading of 30 filter paper units (FPU)/g glucan, and 74 to 82% at an enzyme loading of 60 FPU/g glucan, with glucan loading varying from 3 to 12%. Glucan conversion decreased obviously with glucan loading beyond 15%. The results indicated that the mixture was most efficient in enzymatic hydrolysis of SECS at 3 to 12% glucan loading. The optimal SSF conditions of SECS using a novel Saccharomyces cerevisiae were inoculation optical density (OD)600?=?4.0, initial pH 4.8, 50% nutrients added, 36 hours pre-hydrolysis time, 39°C, and 12% glucan loading (20% solid loading). With the addition of 2% Tween 20, glucan conversion, ethanol yield, final ethanol concentration reached 78.6%, 77.2%, and 59.8 g/L, respectively, under the optimal conditions. The results suggested that the solid and degradation products’ inhibitory effect on the hydrolysis and fermentation of SECS were also not obvious at high glucan loading. Additionally, glucan conversion and final ethanol concentration in SSF of SECS increased by 13.6% and 18.7%, respectively, compared with separate hydrolysis and fermentation (SHF).

Conclusions

Our research suggested that high glucan loading (6 to 12% glucan loading) and high temperature (39°C) significantly improved the SSF performance of SECS using a thermal- and ethanol-tolerant strain of S. cerevisiae due to the removal of degradation products, sugar feedback, and solid’s inhibitory effects. Furthermore, the surfactant addition obviously increased ethanol yield in SSF process of SECS.
  相似文献   

6.
Simultaneous saccharification and fermentation of lime-treated biomass   总被引:4,自引:0,他引:4  
Simultaneous saccharification and fermentation (SSF) was performed on lime-treated switchgrass and corn stover, and oxidatively lime-treated poplar wood to determine their compatibility with Saccharomyces cerevisiae. Cellulose-derived glucose was extensively utilized by the yeast during SSF. The ethanol yields from pretreated switchgrass, pretreated corn stover, and pretreated-and-washed poplar wood were 72%, 62% and 73% of theoretical, respectively, whereas those from -cellulose were 67 to 91% of theoretical. The lower ethanol yields from treated biomass resulted from lower cellulose digestibilities rather than inhibitors produced by the pretreatment. Oxidative lime pretreatment of poplar wood increased the ethanol yield by a factor of 5.6, from 13% (untreated) to 73% (pretreated-and-washed).  相似文献   

7.
ABSTRACT: BACKGROUND: The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum). RESULTS: Compared to batch pretreatment, FT pretreatment consistently resulted in higher xylan recovery, higher removal of non-carbohydrate components and higher glucan solubilization by simultaneous saccharification and fermentation (SSF). Xylan recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate components during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar. Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 minutes and 210 oC. At these conditions, SSF glucan conversion was about 85%, 94% of the xylan was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum), and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with beta-glucosidase at 15 and 30 U/g glucan). Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar. CONCLUSIONS: Xylan removal trends were similar between feedstocks whereas glucan conversion trends were significantly different, suggesting that factors in addition to xylan removal impact amenability of glucan to enzymatic attack. Corn stover exhibited higher hydrolysis yields than bagasse or poplar, which could be due to higher removal of non-carbohydrate components. Xylan in bagasse is more easily degraded than xylan in corn stover and poplar. Conversion of FT-pretreated substrates at low concentration was faster and more complete for C.thermocellum than for SSF.  相似文献   

8.
对汽爆玉米秸秆同步酶解发酵生产乙醇的条件进行优化。首先利用Fractional Factorial设计法对影响乙醇产量的7个因素进行评价,筛选出具有显著效应的3个因素,即反应温度、酶添加量、总反应时间,再以Box—Behnken设计法及响应面分析法确定主要因素的最佳水平,即反应温度37℃,每g纤维素添加纤维素酶32u,反应时间87h,此时乙醇体积分数达到3.69%。新工艺条件实验结果表明,乙醇体积分数在87h可达到3.76%,和原工艺相比,反应时间缩短了9h,乙醇体积分数提高了13%。  相似文献   

9.
The two main sugars in the agricultural by-product corn stover are glucose and xylose. Co-fermentation of glucose and xylose at high content of water-insoluble solids (WIS) without detoxification is a prerequisite to obtain high ethanol concentration and to reduce production costs. A recombinant strain of Saccharomyces cerevisiae, TMB3400, was used in simultaneous saccharification and fermentation (SSF) of whole pretreated slurry of corn stover at high WIS. TMB3400 co-fermented glucose and xylose with relatively high ethanol yields giving high final ethanol concentration. The ethanol productivity increased with increasing concentration of pretreatment hydrolysate in the yeast production medium and when SSF was performed in a fed-batch mode.  相似文献   

10.
The higher ethanol titer inevitably requires higher solids loading during the simultaneous enzymatic saccharification and fermentation (SSF) using lignocellulose as the feedstock. The mixing between the solid lignocellulose and the liquid enzyme is crucially important. In this study, a bioreactor with a novel helical impeller was designed and applied to the SSF operation of the steam explosion pretreated corn stover under different solids loadings and different enzyme dosages. The performances using the helical impeller and the common Rushton impeller were compared and analyzed by measuring rheological properties and the mixing energy consumption. The results showed that the new designed stirring system had better performances in the saccharification yield, ethanol titer, and energy cost than those of the Rushton impeller stirring. The mixing energy consumption under different solids loadings and enzyme dosages during SSF operation were analyzed and compared to the thermal energy in the ethanol produced. A balance for achieving the optimal energy cost between the increased mixing energy cost and the reduced distillation energy cost at the high solids loading should be made. The potentials of the new bioreactor were tested under various SSF conditions for obtaining optimal ethanol yield and titer. Biotechnol. Bioeng. 2010. 105: 718–728. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Bi D  Chu D  Zhu P  Lu C  Fan C  Zhang J  Bao J 《Biotechnology letters》2011,33(2):273-276
Dry distiller’s grain and solubles (DDGS) is a major by-product of corn-based ethanol production and is usually used as animal feed. Here, it was added to the simultaneous saccharification and ethanol fermentation (SSF) carried out at high solids loading of steam explosion pretreated corn stover using a mutant strain Saccharomyces cerevisiae DQ1. The performance of SSF process with DDGS was comparable to those using the expensive yeast extract supplementation. With 30% (w/w) solids plus the addition of cellulase and 1 g DDGS l−1, the final ethanol reached 55 g l−1 (7% v/v). The results indicated that the expensive supplement of yeast extract could be replaced by DDGS.  相似文献   

12.
《Process Biochemistry》2007,42(5):834-839
Two different process configurations, simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF), were compared, at 8% water-insoluble solids (WIS), regarding ethanol production from steam-pretreated corn stover. The enzymatic loading in these experiments was 10 FPU/g WIS and the yeast concentration in SSF was 1 g/L (dry weight) of a Saccharomyces cerevisiae strain. When the whole slurry from the pretreatment stage was used as it was, diluted to 8% WIS with water and pH adjusted, SSF gave a 13% higher overall ethanol yield than SHF (72.4% versus 59.1% of the theoretical). The impact of the inhibitory compounds in the liquid fraction of the pretreated slurry was shown to affect SSF and SHF in different ways. The overall ethanol yield (based on the untreated raw material) decreased when SSF was run in absence on inhibitors compared to SSF with inhibitors present. On the contrary, the presence of inhibitors decreased the overall ethanol yield in the case of SHF. However, the SHF yield achieves in the absence of inhibitors was still lower than the SSF yield achieves with inhibitors present.  相似文献   

13.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

14.
A two-stage hybrid fractionation process was investigated to produce cellulosic ethanol and furfural from corn stover. In the first stage, zinc chloride (ZnCl2) was used to selectively solubilize hemicellulose. During the second stage, the remaining treated solids were converted into ethanol using commercial cellulase and Saccharomyces cerevisiae or recombinant Escherichia coli, KO11. This hybrid fractionation process recovered 93.8% of glucan, 89.7% of xylan, 71.1% of arabinan, and 74.9% of lignin under optimal reaction conditions (1st stage: 5% acidified ZnCl2, 7.5 ml/min, 150 °C (10 min) and 170 °C (10 min); 2nd stage: simultaneous saccharification and fermentation (SSF) using S. cerevisiae). The furfural yield from the hemicellulose hydrolysates was 58%. The SSF of the treated solids resulted in 69–98% of the theoretical maximum ethanol yields based on the glucan content in the treated solids. After fermentation, the solid residues contained primarily lignin. Based on the total lignin in untreated corn stover, the lignin recovery yield was 74.9%.  相似文献   

15.
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute‐acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose–xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute‐acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical‐based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. Biotechnol. Bioeng. 2010;105: 992–996. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
Corn stover is the most abundant agricultural residue in China and a valuable reservoir for bioethanol production. In this study, we proposed a process for producing bioethanol from corn stover; the pretreatment prior to presaccharification, followed by simultaneous saccharification and fermentation (SSF) by using a flocculating Saccharomyces cerevisiae strain, was optimized. Pretreatment with acid–alkali combination (1% H2SO4, 150°C, 10 min, followed by 1% NaOH, 80°C, 60 min) resulted in efficient lignin removal and excellent recovery of xylose and glucose. A glucose recovery efficiency of 92.3% was obtained by enzymatic saccharification, when the pretreated solid load was 15%. SSF was carried out at 35°C for 36 hr after presaccharification at 50°C for 24 hr, and an ethanol yield of 88.2% was achieved at a solid load of 15% and an enzyme dosage of 15 FPU/g pretreated corn stover.  相似文献   

17.
Commercial-scale cellulosic ethanol production has been hindered by high costs associated with cellulose-to-glucose conversion and hexose and pentose co-fermentation. Simultaneous saccharification and fermentation (SSF) with a yeast strain capable of xylose and cellobiose co-utilization has been proposed as a possible avenue to reduce these costs. The recently developed DA24-16 strain of Saccharomyces cerevisiae incorporates a xylose assimilation pathway and a cellodextrin transporter (CDT) that permit rapid growth on xylose and cellobiose. In the current work, a mechanistic kinetic model of cellulase-catalyzed hydrolysis of cellulose was combined with a multi-substrate model of microbial growth to investigate the ability of DA24-16 and improved cellobiose-consuming strains to obviate the need for exogenously added β-glucosidase and to assess the impact of cellobiose utilization on SSF and separate hydrolysis and fermentation (SHF). Results indicate that improved CDT-containing strains capable of growing on cellobiose as rapidly as on glucose produced ethanol nearly as rapidly as non-CDT-containing yeast supplemented with β-glucosidase. In producing 75 g/L ethanol, SSF with any strain did not result in shorter residence times than SHF with a 12 h saccharification step. Strains with improved cellobiose utilization are therefore unlikely to allow higher titers to be reached more quickly in SSF than in SHF.  相似文献   

18.
Kim TH  Lee YY 《Bioresource technology》2005,96(18):2007-2013
Corn stover was pretreated with aqueous ammonia in a flow-through column reactor, a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causes swelling and efficient delignification of biomass at high temperatures. The ARP process solubilizes about half of xylan, but retains more than 92% of the cellulose content. Enzymatic digestibility of ARP-treated corn stover is 93% with 10 FPU/g-glucan enzyme loading. The SEM pictures and FTIR spectra confirm swelling and delignification effects of the ARP process. The X-ray crystallography data indicate that the basic crystalline structure of the cellulosic component of corn stover is not altered by the ARP treatment. Low-liquid ARP can reduce the liquid throughput and residence time to 3.3 mL/g-biomass and 10-12 min, without adversely affecting the overall effectiveness. The low-water ARP achieved 73.4% delignification and 88.5% digestibility with 15 FPU/g-glucan. The ethanol yield from the SSF of low-liquid ARP-treated corn stover using Saccharomyces cerevisiae reached 84% of the theoretical maximum. Successive operation of a hot-water treatment and the ARP was applied as a method of biomass fractionation. The two-stage process separated xylan in the first stage (84%) and lignin in the second stage (75%), resulting treated solid that contains 79% glucan.  相似文献   

19.
Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.  相似文献   

20.
Han Y  Chen H 《Bioresource technology》2008,99(14):6081-6087
Purification and characterization of beta-glucosidase from corn stover was performed and the enzyme was tried in SSF to evaluate the suitability of plant glycosyl hydrolases in lignocellulose conversion. A beta-glucosidase with M(w) of 62.4 kDa was purified to homogeneity from post-harvest corn stover. The following physicochemical and kinetic parameters of the beta-glucosidase were studied respectively: optimum temperature, thermal stability, optimum pH, pH stability, K(m), V(max), V(i), cellobiose inhibition, tryptic peptide mass spectrometry and effect of metal ions and other reagents on the activity. The beta-glucosidase activity on salicin was optimal at pH 4.8 and 37 degrees C. The unique property of optimum temperature makes the beta-glucosidase potentially useful in SSF. In SSF of steam explosion pretreated corn stover, the supplementation of the purified beta-glucosidase was more effective than Aspergillus niger beta-glucosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号