首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sequential anaerobic-aerobic digestion was applied to waste activated sludge (WAS) of a full scale wastewater treatment plant. The study was performed with the objective of testing the sequential digestion process on WAS, which is characterized by worse digestibility in comparison with the mixed sludge. Process performance was evaluated in terms of biogas production, volatile solids (VS) and COD reduction, and patterns of biopolymers (proteins and polysaccharides) in the subsequent digestion stages. VS removal efficiency of 40%, in the anaerobic phase, and an additional removal of 26%, in the aerobic one, were observed. For total COD removal efficiencies of 35% and 25% for anaerobic and aerobic stage respectively, were obtained. Kinetics of VS degradation process was analyzed by assuming a first order equation with respect to VS concentration. Evaluated kinetic parameters were 0.44 ± 0.20 d(-1) and 0.25 ± 0.15 d(-1) for the anaerobic stage and aerobic stage, respectively. With regard to biopolymers, in the anaerobic phase the content of proteins and polysaccharides increased to 50% and 69%, respectively, whereas in the subsequent aerobic phase, a decrease of 71% for proteins and 67% for polysaccharides was observed. The average specific biogas production 0.74 m(3)/(kg VS destroyed), was in the range of values reported in the specialized literature for conventional anaerobic mesophilic WAS digestion.  相似文献   

2.
The effect of ultrasound and gamma-irradiation used as pre-treatments for the anaerobic digestion of waste activated sludge at both mesophilic and thermophilic temperatures was examined. Untreated activated sludge was also subjected to anaerobic digestion at these temperatures as a control. The sonication time was 90 s using a Soniprep 150 (MSE Scientific Instruments) which operated at 23 kHz and had been adjusted to give an output of 47 W and the gamma-irradiation dose was 500 krad. The digesters were operated in a semi-continuous mode, being fed with fresh sludge every 24 h at hydraulic retention times (HRT) of 8, 10 and 12 days. Over the 24 h period the differences between the digesters, in terms of volatile solids (VS) reductions and biogas production, were not statistically significant for any particular set of conditions. Thermophilic digestion performed better than mesophilic digestion in terms of biogas production, VS reductions (except at HRT of 8 days) and specific methane yields and the optimum retention time was 10 days, at both temperatures. When gas production over the initial eight hours (probably the hydrolytic stage) was examined, it was found that the gas production rates for pre-treated sludges were higher than those for untreated sludges. This was most pronounced at thermophilic temperatures and a HRT of 10 days. Sonication did not affect the numbers of faecal coliforms in the sludge. However, gamma-radiation caused a 3-log reduction and, when coupled with mesophilic digestion, gave a product which contained < 100 g(-1) TS. Thermophilic anaerobic digestion produced sludges which contained < 1 g(-1) TS irrespective of any pre-treatment.  相似文献   

3.
The use of carbon-based conductive materials has been shown to lead to an increase in biogas and methane yields during anaerobic digestion (AD). The effect of these additives on AD using synthetic substrates has been extensively studied, yet their significance for wastewater sludge digestion has not been adequately investigated. Therefore, the aim of this research was to optimize the concentration of petroleum coke (PC) that is a waste by-product of oil refineries, for the anaerobic digestion of wastewater sludge and investigation of phosphate removal in the AD process in the mesophilic temperature range. According to the results of the experiments, supplementing reactors with PC could significantly improve biogas and methane production. Supplementation of reactors with 1.5 g/L PC led to 23.40 ± 0.26% and 42.55 ± 3.97% increase in biogas production and methane generation, respectively. Moreover, the average volatile solids (VS), phosphate, and chemical oxygen demand (COD) removals were 43.43 ± 0.73, 46.74 ± 0.77%, and 60.40 ± 0.38%, respectively.  相似文献   

4.
Two-phase anaerobic digestion of cheese whey was investigated in a system consisting of a stirred acidogenic reactor followed by a stirred methanogenic reactor, the latter being coupled to a membrane filtration system to enable removal of soluble effluent whilst retaining solids. The acidogenic reactor was operated at a hydraulic retention time (HRT) of one day, giving maximum acidification of 52.25% with up to 5 g/l volatile fatty acids, of which 63.7% was acetic acid and 24.7% was propionic acid. The methanogenic reactor received an organic load up to 19.78 g COD/ld, corresponding to a HRT of 4 days, at which 79% CODs and 83% BOD(5) removal efficiencies were obtained. Average removals of COD, BOD(5) and TSS in the two-phase anaerobic digestion process were 98.5%, 99% and 100%, respectively. The daily biogas production exceeded 10 times reactor volume and biogas methane content was greater than 70%.  相似文献   

5.
This work focuses on fermentation of pre-treated waste activated sludge (WAS) to generate volatile fatty acids (VFAs). Pre-treatment by high-pressure thermal hydrolysis (HPTH) was shown to aid WAS fermentation. Compared to fermentation of raw WAS, pre-treatment enabled a 2-5x increase in VFA yield (gVFA(COD)gTCOD(-1)) and 4-6x increase in VFA production rate (gVFA(COD) L(-1) d(-1)). Three sludges, pre-treated in full-scale HPTH plants, were fermented. One was from a plant processing a mix of primary sludge and WAS and the other two from plants processing solely WAS. The HPTH plants solubilised suspended matter, evidenced by a 20-30% decrease in suspended solids and an increase of soluble COD : total COD from 0.04 to 0.4. Fermentation of the three sludges yielded similar VFA concentrations (15-20gVFA(COD) L(-1)). The yields were largely independent of retention time (1 d-6 d) and temperature (42°C, 55°C). Also, the product spectrum depended mostly on the composition of the sludge rather than on operating conditions.  相似文献   

6.
An electric pulse-power reactor consisting of one coaxial electrode and multiple ring electrodes was developed to solubilize waste activated sludge (WAS) prior to anaerobic digestion. By pretreatment of WAS, the soluble chemical oxygen demand (SCOD)/total chemical oxygen demand (TCOD) ratio and exocelluar polymers (ECP) content of WAS increased 4.5 times and 6.5 times, respectively. SEM images clearly showed that pulse-power pretreatment of WAS was found to result in destruction of sludge cells. Batch-anaerobic digestion of pulse-power treated sludge showed 2.5 times higher gas production than that of untreated sludge. Solubilized sludge cells by pulse-power pretreatment would be readily utilized for anaerobic microorganisms to produce anaerobically-digested gas. Slow or lagged gas production in the initial anaerobic digestion stage of pulse-power pretreated sludge implied that the methane-forming stage of anaerobic digestion would be the rate-limiting step for anaerobic digestion of pulse-power pretreated sludge.  相似文献   

7.
The mesophilic anaerobic treatment of concentrated sludge from an Atlantic salmon smolt hatchery (total solids (TS): 6.3-12.3wt%) was investigated in a continuous stirred tank reactor (CSTR) at 35 degrees C and 55-60 days hydraulic retention time (HRT). COD-stabilization between 44% and 54% and methane yields between 0.140 and 0.154l/g COD added (0.260-0.281l/g VS added) were achieved. The process was strongly inhibited, with volatile fatty acid concentrations of up to 28 g/l. But the buffer capacity was sufficient to keep the pH-value at 7.4-7.55 during the whole operation. The fertilizing value of the treated sludge was estimated to be 3.4-6.8 kg N and 1.2-2.4 kg P per ton. However, the high VFA content would necessitate special means of application. The energy from the methane that was achieved in the present study would be sufficient to cover about 2-4% of the energy demands of a flow-through hatchery.  相似文献   

8.
Waste activated sludge (WAS) is difficult to degrade in anaerobic digestion systems and pretreatments have been shown to speed up the hydrolysis stage. Here the effects of acid pretreatment (pH 6-1) using HCl on subsequent digestion and dewatering of WAS have been investigated. Optimisation of acid dosing was performed considering digestibility benefits and level of acid required. Pretreatment to pH 2 was concluded to be the most effective. In batch digestion this yielded the same biogas after 13 days as compared to untreated WAS at 21 days digestion. In semi-continuous digestion experiments (12 day hydraulic retention time at 35 °C) it resulted in a 14.3% increase in methane yield compared to untreated WAS, also Salmonella was eradicated in the digestate. Dewatering investigations suggested that the acid pretreated WAS required 40% less cationic polymer addition to achieve the same cake solid content. A cost analysis was also carried out.  相似文献   

9.
Mu H  Chen Y  Xiao N 《Bioresource technology》2011,102(22):10305-10311
The effect of metal oxide nanoparticles (nano-TiO2, nano-Al2O3, nano-SiO2 and nano-ZnO) on anaerobic digestion was investigated by fermentation experiments using waste activated sludge as the substrates. Nano-TiO2, nano-Al2O3 and nano-SiO2 in doses up to 150 milligram per gram total suspended solids (mg/g-TSS) showed no inhibitory effect, whereas nano-ZnO showed inhibitory effect with its dosages increased. The methane generation was the same as that in the control when in the presence of 6 mg/g-TSS of nano-ZnO, however, which decreased respectively to 77.2% and 18.9% of the control at 30 and 150 mg/g-TSS. The released Zn2+ from nano-ZnO was an important reason for its inhibitory effect on methane generation. It was found that higher dosages of nano-ZnO inhibited the steps of sludge hydrolysis, acidification and methanation. Also, the activities of protease, acetate kinase (AK) and coenzyme F420 were inhibited by higher dosages of nano-ZnO during WAS anaerobic digestion.  相似文献   

10.
This work studied the hydrolysis kinetics and the solubilization of waste activated sludge under a medium range temperature (50-90 degrees C) and pH in the alkaline region (8-11), as a pretreatment stage for anaerobic digestion. The hydrolysis rate for the solubilization of volatile suspended solids (VSS) followed a first-order rate. A linear polynomial hydrolysis model was derived from the experimental results leading to a satisfactory correlation between the hydrolysis rate coefficient, pH, and temperature. At pH 11 and a temperature of 90 degrees C the concentration of the VSS was 6.82%, the VSS reduction reached 45% within ten hours and at the same time the soluble COD was 70.000 mg/l and the total efficiency for methane production 0.28 l of CH4 per g of VSS loading.  相似文献   

11.
Anaerobic acidogenesis of primary sludge: the role of solids retention time   总被引:2,自引:0,他引:2  
This research investigates the effect of solids retention time (SRT) on the acid-phase anaerobic digestion of primary sludge. A series of experiments were conducted using two continuous-flow 3-L units with the following configuration: a completely mixed reactor (CMR) with clarifier and solids recycle and an upflow anaerobic sludge blanket (UASB) reactor. Results show that C(2) to C(5) volatile fatty acids (VFA) were the predominant compounds formed. At a constant hydraulic retention time (HRT) of 12 h, variation in SRT from 10 to 20 days resulted in a slight increase in VFA production in both systems, but at a shorter SRT (5 days) a drastic drop in acid production was observed. In addition, the percent distribution of VFA was to some extent affected by the change in SRT. On the other hand, organic matter degradation [measured by the chemical oxygen demand (COD) specific solubilization rate or the percent volatile suspended solids (VSS) reduction] appeared to be independent of SRT, at least in the range investigated. The percent soluble COD in the form of VFA, however, increased steadily with increasing SRT, approaching the 90% level at 20 days. The remaining soluble COD in the effluent from these systems may be mainly attributed to metabolic intermediates and unused soluble substrate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Pre-treatments for waste activated sludge (WAS) are, in most cases, an attempt to increase the biodegradation and/or improve hydrolysis rate of WAS after anaerobic digestion. This review presents an extensive analysis of WAS pre-treatments effectiveness focusing on increasing the biodegradability. In the first part of the review, WAS is considered as a cluster of organic components: proteins, carbohydrates, humic substances and cells. Based on this breakdown into components, the effect of different pre-treatments on each component (and in combination) is described. Also, possible reasons for the contradictory results frequently found among different studies dealing with the same pre-treatment are included. In the second part, the review describes the effects on volatile solids removal by digestion after pre-treatment and on the dewaterability of the final digestate. The energy balance and potential limiting factors for each pre-treatment are also taken into account. From the published works it is concluded that some pre-treatment techniques, such as thermal hydrolysis, thermal phased anaerobic digestion and low-temperature pre-treatment are effective ways to increase energy production and to improve other sludge properties, such as dewatering. However, these techniques are very energy intensive and require a large capital outlay, so research on milder pre-treatment techniques is valuable.  相似文献   

13.
添加厨余垃圾对剩余污泥厌氧消化产沼气过程的影响   总被引:4,自引:0,他引:4  
为提高剩余污泥厌氧消化的沼气产量和甲烷含量,研究了厨余垃圾的不同添加量对剩余污泥厌氧消化性能的影响。结果表明,在35℃下,随着剩余污泥中厨余垃圾添加量的增加,厌氧消化系统中碳氮质量比(C/N)、胞外多聚物(EPS)等生理生化指标均有不同程度的改善。其中当剩余污泥与厨余垃圾质量比为2:1时,混合有机废弃物中沼气产量和甲烷含量均达到最大值,每克挥发性固体(VS)产生了156.56mL沼气,甲烷体积分数为67.52%,分别比剩余污泥单独厌氧消化时的产气量提高了5倍和1.5倍。  相似文献   

14.
A two-stage anaerobic treatment pilot plant was tested for the treatment of raw domestic wastewater under temperatures ranging from 21 to 14 degrees C. The plant consisted of a hydrolytic upflow sludge bed (HUSB) digester (25.5m3) followed by an upflow anaerobic sludge blanket (UASB) digester (20.36m3). The hydraulic retention time (HRT) varied from 5.7 to 2.8h for the first stage (HUSB digester) and from 13.9 to 6.5h for the second stage (UASB digester). Total suspended solids (TSS), total chemical oxygen demand (TCOD), and biochemical oxygen demand (BOD) removals ranged from 76% to 89%, from 49% to 65%, and from 50% to 77%, respectively, for the overall system. The percentage of influent COD converted to methane was 36.1%, the hydrolysis of influent volatile suspended solids (VSS) reached 59.7% and excess biomass was 21.6% of the incoming VSS. Plant performance was influenced by the wastewater concentration and temperature, yet better results were obtained for influent COD higher than 250mg/l.  相似文献   

15.
Biogas has unique properties for improving the biodegradability of biomass solids during anaerobic digestion (AD). This report presents batch test results of the first investigation into utilizing biogas plasticization to "condition" organic polymers during active digestion of waste activated sludge (WAS). Preliminary design calculations based on polymer diffusion rate limitation are presented. Analysis of the 20 degrees C batch test data determined the first order (k(1)) COD conversion coefficient to be 0.167 day(-1) with a maximum COD utilization rate of 11.25 g L(-1) day(-1). Comparison of these batch test results to typical conventional AD performance parameters showed orders of magnitude improvement. These results show that biogas plasticization during active AD could greatly improve renewable energy yields from biomass waste materials such as MSW RDF, STP sludges, food wastes, animal manure, green wastes, and agricultural crop residuals.  相似文献   

16.
【目的】为开发高效的高浓度木质纤维素燃料乙醇蒸馏废水厌氧处理及资源化利用工艺,以活性炭为载体,在实验室规模上对高温厌氧流化床反应器处理木质纤维素燃料乙醇蒸馏废水进行研究。【方法】反应器经65 d梯度驯化后启动,对工艺参数进行一系列优化,并通过基于16S rRNA基因的分子生态学技术分析厌氧污泥中的优势菌群。【结果】实验获得了最优的反应条件和处理效果:厌氧流化床反应器(Anaerobic fluidized bed reactor,AFBR)在温度55±1°C、有机负荷率(OLR)13.8 g COD/(L·d)及水力停留时间(HRT)48 h操作时,COD去除率达到90%以上,同时甲烷产率达到290 mL/g COD;菌群鉴定分析结果显示高温厌氧活性污泥中Clostridia所占比例最大,产甲烷菌属以Methanoculleus和Methanosarcina为主,其它功能菌群主要为Alphaproteobacteria等。【结论】AFBR反应器可高效降解木质纤维素燃料乙醇蒸馏废水并产生生物能源甲烷,其反应体系内微生物种类丰富。  相似文献   

17.
The use of photosynthetic microalgae for nutrient removal and biofuel production has been widely discussed. Anaerobic digestion of waste microalgal biomass to produce biogas is a promising technology for bioenergy production. However, the methane yield from this anaerobic process was limited because of the hard cell wall of Chlorella vulgaris. The use of ultrasound has proven to be successful at improving the disintegration and anaerobic biodegradability of Chlorella vulgaris. Ultrasonic pretreatment in the range of 5–200 J ml−1 was applied to waste microalgal biomass, which was then used for batch digestion. Ultrasound techniques were successful and showed higher soluble COD at higher applied energy. During batch digestion, cell disintegration due to ultrasound increased in terms of specific biogas production and the degradation rate. Compared to the untreated sample, the specific biogas production was increased in the ultrasound-treated sample by 90% at an energy dose of 200 J ml−1. For the disintegrated samples, volatile solids reduction was also increased according to the energy input and degradation. These results indicate that the hydrolysis of microalgal cells is the rate-limiting step in the anaerobic digestion of microalgal biomass.  相似文献   

18.
Anaerobic digestion of cheese whey wastewaters (CW) was investigated in a system consisting of an ecological pretreatment followed by upflow anaerobic filter (UAF). The pretreatment was conducted to solve the inhibition problems during anaerobic treatment of CW caused by the amounts of fats, proteins and carbohydrates and to avoid the major problems of clogging in the reactor. The optimized ecological pretreatment of diluted CW induce removal yields of 50% of chemical oxygen demand (COD) and 60% of total suspended solids (TSS) after acidification by Lactobacillus paracasei at 32 degrees C during 20 h and neutralization with lime. The pretreated CW was used to feed UAF (35 degrees C). The effects of organic loading rate (OLR) and hydraulic retention time (HRT) on the pretreated CW anaerobic degradation were examined. The average total COD removals achieved was 80-90%. The performance of the reactor was depressed by increasing the COD concentration to 20 g/l (OLR = 4 gCOD/ld) and the COD removal efficiency was reduced to 72%. Significant methane yield (280 l/kg COD removal) was obtained at an HRT of 2 days.  相似文献   

19.
During wastewater treatment, most organic matter is transferred to a solid phase commonly known as sludge or biosolids. The high cost of sludge management and the growing interest in alternative energy sources have prompted proposals for different strategies to optimize biogas production during anaerobic sludge treatment. Because of the high solid content and complex structure of sludge-derived organic matter, methane production during digestion is limited at the hydrolysis step. Therefore, large digester volume and long retention times of over 20 days are necessary to achieve adequate stabilization. Pre-treatments can be used to hydrolyze sludge and consequently improve biogas production, solids removal and sludge quality after digestion. This paper reviews the main pre-treatment processes, with emphasis on the most recent developments. An overview of the different technologies is presented, discussing their effects on sludge properties and anaerobic digestion. Future challenges and concerns related to pre-treatment assessment and implementation are also addressed.  相似文献   

20.
AIMS: To test the potential use of Phanerochaete chrysosporium and other white-rot fungi to detoxify olive mill wastewaters (OMW) in the presence of a complex activated sludge. To combine the aerobic with anaerobic treatment to optimize the conversion of OMW in biogas. METHODS AND RESULTS: A 25-l air lift reactor was used to pretreat OMW by white-rot fungi. Detoxification of the OMW was monitored by size exclusion HPLC analysis, chemical oxygen demand (COD)/biological oxygen demand (BOD(5)) ratio evolution, and bioluminescence toxicity test. Anaerobic treatment of OMW was performed in a 12-l anaerobic filter reactor. Efficiency of the treatment was evaluated by organic matter removal, and biogas production. By comparison with the pretreatment by activated sludge only, the bioaugmentation with Phanerochaete chrysosporium or Trametes versicolor led to high removal of organic matter, decreased the COD/BOD(5) ratio and the toxicity. The subsequent anaerobic digestion of the OMW pretreated with activated sludge-white-rot fungi showed higher biomethanization yields than that pretreated with activated sludge only. Higher loading rates (7 g COD l(-1) day(-1)) were reached without any acidification or inhibition of biomethanization. CONCLUSIONS: The use of white-rot fungi, even in the presence of complex biological consortia to detoxify OMW, proved to be possible and made the anaerobic digestion of OMW for methane production feasible. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of fungi for OMW reuse and energy production could be adapted to industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号