首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
Pinus sylvestris and Salix dasyclados, which differ in leaf longevity, were compared with respect to four aspects of photosynthetic light use and response: high light acclimation, photoinhibition resistance and recovery, lightfleck exposure and use and chloroplast acclimation across leaves. The first two aspects were examined using seedlings under controlled conditions and the other two were tested using trees in the field. When exposed to high light, shade leaves of Pinus acclimated completely, achieving the same photosynthetic capacities as sun leaves, whereas shade leaves of Salix did not reach sun leaf capacities although the absolute magnitude of their acclimation was larger. Shade leaves of Pinus were also more resistant to photoinhibition than those of Salix. Much of the direct light supplied within the canopy was in the form of rapid fluctuations, lightflecks, for Pinus and Salix alike. They exploited short lightflecks with similar efficiency. The greater proportion of diffuse light in the canopy for Pinus than Salix seems to lead to a lesser degree of differential intra-leaf acclimation of chloroplasts, in turn leading to lower efficiency of photosynthesis under unilateral light as reflected by a lower convexity, rate of bending, of the light–response curve. The differences in light use and responses are discussed in relation to possible differences in characteristics of the long and short-lived leaf.  相似文献   

2.
Leaves deep in canopies can suddenly be exposed to increased irradiances following e.g. gap formation in forests or pruning in crops. Studies on the acclimation of photosynthesis to increased irradiance have mainly focused on the changes in photosynthetic capacity (Amax), although actual irradiance often remains below saturating level. We investigated the effect of changes in irradiance on the photosynthesis irradiance response and on nitrogen allocation in fully grown leaves of Cucumis sativus. Leaves that fully developed under low (50 µmol m?2 s?1) or moderate (200 µmol m?2 s?1) irradiance were subsequently exposed to, respectively, moderate (LM‐leaves) or low (ML‐leaves) irradiance or kept at constant irradiance level (LL‐ and MM‐leaves). Acclimation of photosynthesis occurred within 7 days with final Amax highest in MM‐leaves, lowest in LL‐leaves and intermediate in ML‐ and LM‐leaves, whereas full acclimation of thylakoid processes underlying photosystem II (PSII) efficiency and non‐photochemical quenching occurred in ML‐ and LM‐leaves. Dark respiration correlated with irradiance level, but not with Amax. Light‐limited quantum efficiency was similar in all leaves. The increase in photosynthesis at moderate irradiance in LM‐leaves was primarily driven by nitrogen import, and nitrogen remained allocated in a similar ratio to Rubisco and bioenergetics, while allocation to light harvesting relatively decreased. A contrary response of nitrogen was associated with the decrease in photosynthesis in ML‐leaves. Net assimilation of LM‐leaves under moderate irradiance remained lower than in MM‐leaves, revealing the importance of photosynthetic acclimation during the leaf developmental phase for crop productivity in scenarios with realistic, moderate fluctuations in irradiance that leaves can be exposed to.  相似文献   

3.
Measurements of photosynthesis and respiration were made on leaves in summer in a Quercus rubra L. canopy at approximately hourly intervals throughout 5 days and nights. Leaves were selected in the upper canopy in fully sunlit conditions (upper) and in the lower canopy (lower). In addition, leaves in the upper canopy were shaded (upper shaded) to decrease photosynthesis rates. The data were used to test the hypothesis that total night‐time respiration is dependent on total photosynthesis during the previous day and that the response is mediated through changes in storage in carbohydrate pools. Measurements were made on clear sunny days with similar solar irradiance and air temperature, except for the last day when temperature, especially at night, was lower than that for the previous days. Maximum rates of photosynthesis in the upper leaves (18.7 μmol m?2 s?1) were approximately four times higher than those in the lower leaves (4.3 μmol m?2 s?1) and maximum photosynthesis rates in the upper shaded leaves (8.0 μmol m?2 s?1) were about half those in the upper leaves. There was a strong linear relationship between total night‐time respiration and total photosynthesis during the previous day when rates of respiration were normalized to a fixed temperature of 20°C, removing the effects of temperature from this relationship. Measurements of specific leaf area, nitrogen and chlorophyll concentration and calculations of the maximum rate of carboxylation activity, Vcmax, were not significantly different between upper and upper shaded leaves 5 days after the shading treatment was started. There were small, but significant decreases in the rate of apparent maximum electron transport at saturating irradiance, Jmax (P>0.05), and light use efficiency, ? (P<0.05), for upper shaded leaves compared with those for upper leaves. This suggests that the duration of shading in the experiment was sufficient to initiate changes in the electron transport, but not the carboxylation processes of photosynthesis. Support for the hypothesis was provided from analysis of soluble sugar and starch concentrations in leaves. Respiration rates in the upper shaded leaves were lower than those expected from a relationship between respiration and soluble sugar concentration for fully exposed upper and lower leaves. However, there was no similar difference in starch concentrations. This suggests that shading for the duration of several days did not affect sugar concentrations but reduced starch concentrations in leaves, leading to lower rates of respiration at night. A model was used to quantify the significance of the findings on estimated canopy CO2 exchange for the full growing season. Introducing respiration as a function of total photosynthesis on the previous day resulted in a decrease in growing season night‐time respiration by 23% compared with the value when respiration was held constant. This highlights the need for a process‐based approach linking respiration to photosynthesis when modelling long‐term carbon exchange in forest ecosystems.  相似文献   

4.
The mechanism of response of plants to vertical light intensity gradients in leaf canopies was investigated. Since shaded leaves transpire less than leaves in high light, it was hypothesized that cytokinins (CKs) carried by mass transport in the transpiration stream would be distributed over the leaf area of partially shaded plants parallel to the gradient in light intensity. It was also hypothesized that this causes the distribution of leaf growth, leaf N and photosynthetic capacity, and possibly chloroplast acclimation as observed in plants growing in leaf canopies. In a field experiment, the distribution of Ca, N and CKs in a bean leaf canopy of a dense and an open stand supported the concept of a role for CKs in the response of N allocation to the light gradient when a decreasing sensitivity for CKs with increasing leaf age is assumed. Both shading of one leaf of the pair of primary bean leaves and independent reduction of its transpiration rate in a growth cabinet experiment caused lower dry mass, N and Ca per unit leaf area in comparison to the opposite not treated leaf. Shading caused a parallel reduction in CK concentration, which supports the hypothesis, but independent reduction of transpiration rate failed to do the same. Application of benzylaminopurine (BA) counteracted the reduction caused by shade of leaf N, photosynthetic capacity and leaf area growth. The experiments show an important role for the transpiration stream in the response of plants to light gradients. Evidence is presented here that CKs carried in the transpiration stream may be important mediators for the acclimation of plants to leaf canopy density.  相似文献   

5.
In order to reduce heat energy consumption in greenhouse cucumber production, (transparent) screens may be used also during the day, particularly in the early growth phase when high temperatures are required to achieve rapid leaf area development. However, energy savings must be optimised against light reduction‐induced yield loss. For this reason, two experiments were conducted to quantify the effect on photosynthesis and growth of screening cucumber plants during their early growth phase, and on yield in the following generative phase. Screening with different light transmission coefficients was simulated using shading nets. Shading the plants during the first 5 weeks under Central European winter conditions reduced the leaf area by 0.40% per 1% reduction in photosynthetic active radiation (PAR). Moreover, potential leaf net photosynthesis decreased by 0.46% per 1% PAR reduction. A major impact was that the leaf dry matter content, leaf starch content and leaf sugar content of shaded plants diminished significantly. In the course of the following 2 weeks under full light, the leaf photosynthesis of the plants previously shaded recovered fully and the leaf area index rose to 3.3 m2 m?2, considered sufficient for optimal crop photosynthesis. The yield from plants previously shaded diminished slightly as early as from the first harvest week on. These yield losses increased further over the next few weeks, measuring approximately 0.8 kg m?2 per 1 mol m?2 day?1 PAR reduction in the early growth phase. The effect of PAR on plant growth was proportional when relating the PAR integral over the entire experimental period to the total yield and to the total dry matter production, respectively.  相似文献   

6.
Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C3 species grown in photon irradiances of 200 and 1000 µmol m?2 s?1. Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high‐light‐grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light‐saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low‐light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low‐light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important.  相似文献   

7.
Canopy Light Gradient Perception by Cytokinin   总被引:1,自引:0,他引:1  
We have recently identified cytokinin as an important xylem-carried signal involved in the photosynthetic acclimation of plants to light gradients in dense canopies. Lower leaves become shaded in a dense canopy and consequently have reduced transpiration rates. our measurements have shown that this results in a reduced delivery of cytokinins carried in the transpiration stream to shaded leaves, as compared to light-exposed leaves. Cytokinins are involved in the regulation of photosynthetic acclimation to the light gradient by stimulating the expression of photosynthetic enzymes in light-exposed leaves. In shaded leaves, the low delivery rate of cytokinin leads to reduced photosynthetic capacity and ultimately senescence. We show evidence for this role of cytokinin, as part of a complex of signaling pathways where other regulatory mechanisms are also involved. A model is presented depicting the regulation of photosynthetic acclimation by cytokinin delivery to leaves dependent on the irradiance they receive.Key Words: canopy light gradient, transpiration, photosynthetic acclimation, cytokinin, nitrate, systemic signaling  相似文献   

8.
Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.  相似文献   

9.
10.
Photosynthetic responses to light variation in rainforest species   总被引:1,自引:0,他引:1  
Summary The dependence of net carbon gain during lightflecks (artificial sunflecks) on leaf induction state, lightfleck duration, lightfleck photosynthetic photon flux density (PFD), and the previous light environment were investigated in A. macrorrhiza and T. australis, two Australian rainforest species. The photosynthetic efficiency during lightflecks was also investigated by comparing observed values of carbon gain with predicted values based on steady-state CO2 assimilation rates. In both species, carbon gain and photosynthetic efficiency increased during a series of five 30-or 60-s lightflecks that followed a long period of low light; efficiency was linearly related to leaf induction state.In fully-induced leaves of both species, efficiency decreased and carbon gain increased with lightfleck duration. Low-light grown A. macrorrhiza had greater efficiency than predicted based on steady-state rates (above 100%) for lightflecks less than 40 s long, whereas leaves grown in high light had efficiencies exceeding 100% only during 5-s lightflecks. The efficiency of leaves of T. australis ranged from 58% for 40-s lightflecks to 96% for 5-s lightflecks.In low-light grown leaves of A. macrorrhiza, photosynthetic responses to lightflecks below 120 mol m-2 s-1 were not affected significantly by the previous light level. However, during lightflecks at 530 mol m-2 s-1, net carbon gain and photosynthetic efficiency of leaves previously exposed to low light levels were significantly reduced relative to those of leaves previously exposed to 120 and 530 mol m-2 s-1.These results indicate that, in shade-tolerant species, net carbon gain during sunflecks can be enhanced over values predicted from steady-state CO2 assimilation rates. The degree of enhancement, if any, will depend on sunfleck duration, previous light environment, and sunfleck PFD. In forest understory environments, the temporal pattern of light distribution may have far greater consequences for leaf carbon gain than the total integrated PFD.Supported by National Science Foundation Grant BSR 8217071 and USDA Grant 85-CRCR-1-1620  相似文献   

11.
Hoflacher, H. and Bauer, H. 1982. Light acclimation in leaves of the juvenile and adult life phases of ivy (Hedera helix). – Physiol. Plant. 56: 177–182. Light acclimation was investigated during the juvenile and adult life phases of the whole-plant-development in Hedera helix L. For this purpose, cuttings of the juvenile and adult parts of one single parent plant were grown under low-light (PAR 30–50 μmol photons m?2 s?1) and high-light (PAR 300–500 μmol m?2 s?1) conditions: CO2 exchange, chloroplast functions, and specific anatomy of fully developed leaves differentiated under these conditions were determined. In juvenile plants the leaves formed under low and high light had light-saturated rates of net photosynthesis of 6.5 and 11.1 mg CO2 (dm leaf area)?2 h?1, respectively. In adult plants the rates were 9.4 and 22.2 mg dm?2 h?1, indicating a more pronounced capacity for acclimation to strong light in the adult life phase. Higher photosynthetic capacities were accompanied by higher conductances for the CO2 transfer through the stomata, leading to almost the same CO2 concentration in the intercellular spaces. Thus, stomatal conductances were not primarily responsible for the different photo-synthetic capacities. The higher rates in adult and high-light grown leaves were mainly the result of formation of thicker leaves with more chloroplasts per unit leaf area. Expressed per chloroplast, the photosynthetic capacity, the Hill reaction, and the activity of ribulose bisphosphate carboxylase were almost identical in plants grown in low-light and high-light. Measurements of photosynthetic capacity and thickness of leaves of Hedera sampled from field habitats with contrasting light regimes confirm the results of growth chamber studies. It is, therefore, concluded that both life phases of Hedera are capable of acclimating to strong light, but that during the juvenile phase this capacity is not fully developed.  相似文献   

12.
Summary Kudzu occurs in a variety of habitats in the southeastern United States. It is most common in exposed, forest edge sites and road cuts where it forms an extensive ground canopy as well as a canopy overtopping nearby trees, but it can also be found in completely open fields and deeply shaded sites within a forest. Microclimate, stomatal conductance, leaf water potential and photosynthetic responses to light, temperature and humidity were measured in two contrasting microhabitats on Pueraria lobata, kudzu. Midsummer leaf temperatures and leaf-to-air water vapor deficits for plants growing in an exposed site were significantly greater than for those in a shaded site, exceeding 35° C and 50 mmol mol-1, respectively. Maximum stomatal conductance exceeded 400 mmol m-2 s-1 in exposed leaves during peak vegetative growth. Stomatal conductance in shaded leaves was approximately half the value measured in exposed leaves on any particular dya. Maximum photosynthetic carbon uptake was also higher in leaves growing in exposed sites compared to leaves in shaded sites, exceeding 18.7 and 14.0 mol m-2 s-1, respectively. Photosynthesis, stomatal conductance and intercellular CO2 concentration decreased dramatically in response to increasing water vapor deficit for leaves from both sites. However, transpiration showed an initial increase at intermediate water vapor deficits, leveling off or even decreasing at higher values. Leaf water potential demonstrated marked diurnal variation, but remained constant over a wide range of transpirational water fluxes. This latter feature, combined with microenvironmental modification through rapid leaf orientation and pronounced stomatal responses to water vapor deficits may represent important adaptive responses in the exploitation of a diverse array of habitats by kudzu.  相似文献   

13.
This study evaluated the photosynthetic responses of Cucumis sativus leaves acclimated to illumination from three-band white fluorescent lamps with a high red:far-red (R:FR) ratio (R:FR = 10.5) and the photosynthetic responses of leaves acclimated to metal-halide lamps that provided a spectrum similar to that of natural light (R:FR = 1.2) at acclimation photosynthetic photon flux density (PPFD) of 100 to 700 μmol m?2 s?1. The maximum gross photosynthetic rate (P G) of the fluorescent-acclimated leaves was approximately 1.4 times that of the metal-halide-acclimated leaves at all acclimation PPFDs. The ratio of quantum efficiency of photosystem II (ΦPSII) of the fluorescent-acclimated leaves to that of the metal-halide-acclimated leaves tended to increase with increasing acclimation PPFD, whereas the corresponding ratios for the leaf mass per unit area tended to decrease with increasing acclimation PPFD. These results suggest that the greater maximum P G of the fluorescent-acclimated leaves resulted from an interaction between the acclimation light quality and quantity, which was mainly caused by the greater leaf biomass for photosynthesis per area at low acclimation PPFDs and by the higher ΦPSII as a result of changes in characteristics and distribution of chloroplasts, or a combination of these factors at high acclimation PPFDs.  相似文献   

14.
Most past work on the ecophysiology of the Crassulacean acid metabolism (CAM) plant, Hoya carnosa, in the lab and in situ in Australia indicates that this epiphytic vine is better adapted to shaded, not exposed, locations, although a recent study of this species in Taiwan presents findings that run counter to this conclusion. Thus, photosynthetic characteristics of shaded and exposed individuals of H. carnosa were compared in situ in a subtropical rain forest in northeastern Taiwan in order to determine whether this CAM epiphyte is better adapted to the shade or the sun. Although leaves of shade plants had much greater chlorophyll concentrations than did those of sun plants, chlorophyll a/b ratios did not differ between the two groups of plants. Fluorescence measurements revealed some ability of leaves to acclimate to both shade and sun, although some evidence for photoinhibition (photoprotection) was observed in more exposed plants. Despite the latter, both exposed and shaded plants exhibited CAM, measured as diel fluctuations in leaf acidity, and CAM was more consistently found in the exposed plants. Furthermore, some evidence for more CAM at higher light availabilities was found. Overall, the results of this investigation reveal that H. carnosa in this subtropical rain forest in Taiwan exhibits adaptations to both high and low light levels, which should prove adaptive for an epiphytic vine with leaves on the same individual exposed to a wide range of exposure and shade in the host tree canopy.  相似文献   

15.
16.
Light-saturated photosynthetic rates at air levels of carbon dioxide were measured about weekly in upper canopy leaves of two soybean cultivars grown at stand densities of 40 and 100 plants per square meter. Early in the season, when leaf area indices differed between stand densities, plants of both cultivars grown at high stand density had photosynthetic rates which averaged 23% lower than plants at low stand density. Later in the season, when there were no differences in leaf area index between stand densities, there were no differences in photosynthetic rates in the cultivar Kent, but rate differences of about 14% persisted in the cultivar Williams. In Williams mainstem leaves emerged into full sunlight later in their development at high than at low stand density. In both cultivars the oldest fully exposed leaves were photosynthetically immature for much of the season, as higher rates could be achieved by lower leaves which were shaded in situ. The results identify shading of young developing leaves and photosynthetic immaturity of fully exposed leaves as factors limiting canopy photosynthesis in soybeans, and indicate cultivar differences in how much high stand density reduces photosynthetic capacity.  相似文献   

17.
Light absorption and use efficiency (LAUE mol mol−1, daily gross photosynthesis per daily incident light) of each leaf depends on several factors, including the degree of light saturation. It is often discussed that upper canopy leaves exposed to direct sunlight are fully light-saturated. However, we found that upper leaves of three temperate species, a heliophytic perennial herb Helianthus tuberosus, a pioneer tree Alnus japonica, and a late-successional tree Fagus crenata, were not fully light-saturated even under full sunlight. Geometrical analysis of the photosynthetic light response curves revealed that all the curves of the leaves from different canopy positions, as well as from the different species, can be considered as different parts of a single non-rectangular hyperbola. The analysis consistently explained how those leaves were not fully light-saturated. Light use optimization models, called big leaf models, predicted that the degree of light saturation and LAUE are both independent of light environment. From these, we hypothesized that the upper leaves should not be fully light-saturated even under direct sunlight, but instead should share the light limitation with the shaded lower-canopy leaves, so as to utilize strong sunlight efficiently. Supporting this prediction, within a canopy of H. tuberosus, both the degree of light saturation and LAUE were independent of light environment within a canopy, resulting in proportionality between the daily photosynthesis and the daily incident light among the leaves.  相似文献   

18.
 We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1–80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability. Received: 4 January 1997 / Accepted: 28 April 1997  相似文献   

19.
The present study investigated the interaction of growth irradiance (Qint) with leaf capacity for and kinetics of adjustment of the pool size of xanthophyll cycle carotenoids (sum of violaxanthin, antheraxanthin and zeaxanthin; VAZ) and photosynthetic electron transport rate (Jmax) after changes in leaf light environment. Individual leaves of lower‐canopy/lower photosynthetic capacity species Tilia cordata Mill. and upper canopy/higher photosynthetic capacity species Populus tremula L. were either illuminated by additional light of 500–800 µmol m?2 s?1 for 12 h photoperiod or enclosed in shade bags. The extra irradiance increased the total amount of light intercepted by two‐fold for the upper and 10–15‐fold for the lower canopy leaves, whereas the shade bags transmitted 45% of incident irradiance. In control leaves, VAZ/area, VAZ/Chl and Jmax were positively associated with leaf growth irradiance (Qint). After 11 d extra illumination, VAZ/Chl increased in all cases due to a strong reduction in foliar chlorophyll, but VAZ/area increased in the upper canopy leaves of both species, and remained constant or decreased in the lower canopy leaves of T. cordata. The slope for VAZ/area changes with cumulative extra irradiance was positively associated with Qint only in T. cordata, but not in P. tremula. Nevertheless, all leaves of P. tremula increased VAZ/area more than the most responsive leaves of T. cordata. Shading reduced VAZ content only in P. tremula, but not in T. cordata, again demonstrating that P. tremula is a more responsive species. Compatible with the hypothesis of the role of VAZ in photoprotection, the rates of photosynthetic electron transport declined less in P. tremula than in T. cordata after the extra irradiance treatment. However, foliar chlorophyll contents of the exposed leaves declined significantly more in the upper canopy of P. tremula, which is not consistent with the suggestion that the leaves with the highest VAZ content are more resistant to photoinhibition. This study demonstrates that previous leaf light environment may significantly affect the adaptation capacity of foliage to altered light environment, and also that species differences in photosynthetic capacity and acclimation potentials importantly alter this interaction.  相似文献   

20.
Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2, and with two amounts of N fertilizer (none and 70 kg ha−1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号