首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural abundance 13C nuclear magnetic resonance spectroscopy (13C NMR) was used to study the mode of binding of Gd3+ and Mn2+ to the polyol portion of several synthetic D-gluconamides. The results indicate that Gd3+ forms a single, unique binding structure requiring three oxygen atoms. The binding of Mn2+ to the polyol portion of these compounds appears to be nonspecific. The carbohydrate containing model compounds studied may be used to design new metal-ion chelating agents.  相似文献   

2.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2? and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM?1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2? complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

3.
In complexes of divalent metals with large exchange rate constant (KH2O) of the coordinated H2O, such as Ca2+ and Cu2+, the cubic structure in the ligand field is usually unstable and conformation changes are easily induced. We observed the molecular motion of phosphatidylserine (PS) in an amphipathic solvent (water / methanol / chloroform) by 1H-NMR and ESR using Ca2+ and / or Cu2+, which has a similar KH2O to that of Ca2+. We found that Ca2+ did not hinder the molecular movements of PS. However, Cu2+ reduced the movements of both headgroups and the double bonds in the fatty acids of PS. By addition of both Ca2+ and Cu2+, phase transition to a soft solid phase in the PS membrane was observed at room temperature. The results indicate that the headgroups are clustered in two-dimensional network with each ligand field displaced from the aqueous phase to the water / oil interface. The structure changes of the polar headgroups after the binding of divalent cations are considered to trigger the phase transition of this acidic phospholipid membrane.  相似文献   

4.
The anomeric composition and mutarotation rates of fructose 1,6-bisphosphate were determined in the presence of 100 mm KCl at pH 7.0 by 31P NMR. At 23 and 37 °C the solution contains (15 ± 1)% of the α anomer. The anomeric rate constants at 37 °C are (4.2 ± 0.4) s?1 for the β → α anomerization and (14.9 ± 0.5) s?1 for the reverse reaction. A D2O effect between 2.1 and 2.6 was found. From acid base titration curves it appeared that the pK values of the phosphate groups range from 5.8 to 6.0. Mg2+ and Zn2+ bind preferentially to the 1-phosphate in the α-anomeric position. Zn2+ has a higher affinity for this phosphate group than Mg2+ has. At increasing pH the fraction α anomer decreases slightly. At increasing Mg2+/fructose 1,6-bisphosphate ratios the fraction α anomer increases till 19% at a ratio of 20. Proton and probably Mg2+ binding decreases the anomerization rate. The time-averaged preferred orientation of the 1-phosphate along the C1O1 bond of the α conformer is strongly pH dependent, gauche rotamers being predominant at pH 9.4. In the presence of divalent cations the orientation is biased toward trans. A mechanistic model is proposed to explain the Zn2+, Mg2+, and pH-dependent behavior of the gluconeogenic enzyme fructose 1,6-bisphosphatase.  相似文献   

5.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

6.
Studies of the binding of Ni2+ to adenylyl-3',5'-adenosine (ApA) at pH 6-0 by ultraviolet spectrophotometry indicate the formation of a 1:1 complex in the presence of a large excess of metal ion. At 25 °C. and ionic strength μ = 0.5 M, the stability constant of Ni(ApA) is evaluated to be K = 2.6 (±0.6) M?1. The low stability is taken as evidence that the predominant complex species is one in which the ApA acts as a monodentate ligand, mainly through the adenine group. The rate constants for complex formation and dissociation, kf = 1430 M?1 s?1 and kb = 665 s?1 (25°C. μ = 0.5M). determined by the temperature-jump relaxation technique, are consistent with this interpretation. The binding strength of Ni2+ to poly(adenylic acid) [poly(A)] has been studied at pH 7.0 using murexide as an indicator of the concentration of free Ni2+. Within the concentration range [Ni2+ = 1 × 10?5 × 10?3 M the data can be represented in the form of a linear Scatchard plot. i.e., the process can be described as the binding of Ni2+ to one class of independent binding sites. The number of binding sites per monomer is 0.26, and the stability constant K = 8.2×103 M?1 (25°C μ = 0.1 M). In kinetic studies of the reaction of Ni2+ with poly(A), two relaxation effects due to complex formation were detected, one with a concentration-independent time constant of about 0.4 ms, the other with a concentration-dependent time constant in the millisecond range. The concentration dependence of the longer relaxation time can be accounted for by a three-step mechanism which consists of a fast second-order association reaction followed by two first-order steps. There is evidence, however, that the overall process is more complicated than expressed by the three-step mechanism.  相似文献   

7.
The solid phase synthesis of [[1-13C]Phe11]Gramicidin B was successfully achieved using the 9-Fluorenylmethyloxycarbonyl protecting group. There was at least a 30% drop in yield during the adition of the three valines in positions 8, 7 and 6, which is likely due to steric hindrance caused by the steric constraints of the valine side chains. Still, the overall yield of the peptide was comparable with that obtained using thetert-butyloxycarbonyl group for protection. The synthetic Gramicidin B was completely characterized by high-pressure liquid chromatography, circular dichroism, and13C nuclear magnetic resonance spectra. Also reported are the single-channel conductance properties, which compare favorably with those reported earlier and demonstrate the interesting multiplicity of conductance states to be distinquishable from that of Gramicidin A. Thus, these several useful characterizations have been carried out on the same preparation.Abbreviations: IUPAC-IUB Commission recommendations are used in most cases: AcOH, acetic acid; Boc,tert-butyloxycarbonyl; CD, circular dichroism; CMR,13C nuclear magnetic resonance; DCC,N,N'-dicyclohexylcarbodiimide; EtOAc, ethyl acetate; Fmoc, 9-fluorenylmethyloxycarbonyl; HOBt, 1-hydroxybenzot iazole; HPLC, high-pressure liquid chromatography; MeOH, methanol;-OSu,N-hydroxysuccinimide ester; TFA, trifluoroacetic acid; t.l.c., thin-layer chromatography; Me2SO-d 6, dimethyl-d 6-sulfoxide; CMA, chloroform-methanol-acetic acid; DMF, dimethyl for-mamide; DIEA, diisoproprylethylamine.  相似文献   

8.
Natural-abundance, 13C-n.m.r. spectroscopy was used to study the binding of Gd3+ and Mn2+ to N-acetyl-2-O-methyl-α-neuraminic acid (2) and to methyl N-acetyl-2-O-methyl-α-neuraminate (3). The results showed that Gd3+ and Mn2+ bind in the region of the glycerol-1-yl side-chain and the 5-acetamido group of compound 3. When the α-NeuAc derivative contains a carboxylate anion, as in compound 2, multiple, metal-ion-binding sites occur, involving the head (the carboxyl end) and the tail (the glycerol-1-yl and 5-acetamido groups) of the molecule.  相似文献   

9.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated.The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed.The enzyme · ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme · ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi.The presence or absence of Na+ during binding has a special influence upon the character of the enzyme · ouabain complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme · ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme · ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate or Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration.It is proposed that the different ouabain dissociation rates reflect different reactive state of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

10.
Ca2+ and Mn2+ promote the binding of the basic isoperoxidase to a crude membrane preparation in extracts from Pharbitis cotyledons. The Ca2+- or Mn2+-induced binding is resistant to high ionic strength and can be saturated by increasing the divalent ion or the isoperoxidase concentrations. Treatments in vitro with glucosaminidase or in vivo with tunicamycin show that the carbohydrate part of the isoperoxidase is necessary for the binding. The amino sugar galactosamine inhibits the binding at rather high concentrations. Pharbitis basic isoperoxidase can be bound to zucchini squash microsomes in the presence of Ca2+ and conversely.  相似文献   

11.
Based on a proposed solution conformation of the Ca2+ ion complex of the repeat hexapeptide of elastin, l-Val-l-Ala-l-Pro-Gly-l-Val-Gly, it is possible to modify the molecule making it more lipophilic for lipid bilayer permeation while retaining its complexation features. Therefore the two peptides, For-MeVal-Ala-Pro-Sar-Pro-Sar-OMe and For-MeVal-Ala-Pro-Sar-Pro-Sar-OH, were synthesized and evaluated for lipid bilayer activity and cation binding (For, N-formyl; Me, N-methyl; Sar, N-methyl glycine). Both peptides bound Ca2+ preferentially but did not exhibit the properties of a Ca2+ carrier. They were however active as K+ carriers although K+ ion titration curves showed a much lower affinity for K+ than for Ca2+. The addition of Ca2+ or Mg2+ to the bilayer system inhibited the peptide K+ carrier activity. Three possible explanations of this interesting Ca2+ inhibition of carrier activity are irreversible complexation of Ca2+, mixed ligand complex formation involving Ca2+, lipid and peptide, and impermeability of the lipid layer when peptide is complexed with a divalent cation.  相似文献   

12.
[1-13C, 1,1-2H2] ethanol and [2,2,2-2H3] ethanol were administered to bile fistula rats. A new technique, 2H, 1H-decoupled 13C nuclear magnetic resonance, was used in attempting to account for the distribution of the isotopic species along the steroid skeleton of 3–45 mg of isolated bile acids. The technique revealed 2H incorporation at many carbon sites unambiguously, but has limitations as a quantitative 2H assay at these levels of sample availability.  相似文献   

13.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1·10?4 M. The sarcolemmal markers, ouabain-sensitive (Na+ + K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ + Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27–39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ + Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K12 for inhibition approx. 1.5 μM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

14.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

15.
The effects of anhydrous Ca(NO3)2 on the 13C nuclear magnetic resonance (nmr) and circular dichroism spectra of tetracycline in Me2SO-d6 solution have been investigated in order to make a comparison with the results of a previous study in which the effects of Mg(NO3)2 were determined under the same conditions. The results of experiments described in this article provide strong evidence that Ca2+ and Mg2+ bind tetracycline at the same sites in Me2SO and that both ions induce the same change in molecular conformation of tetracycline upon binding. The Ca2+ complex, in contrast to the Mg2+ complex, has a lifetime that is short on the nmr time scale.  相似文献   

16.
J.H. Verheijen  P.W. Postma  K. Van Dam 《BBA》1978,502(2):345-353
1. 8-Azido-ATP is a substrate for Escherichia coli (Ca2+ + Mg2+)-ATPase (E. coli F1).2. Illumination of E. coli F1 in the presence of 8-azido-ATP causes inhibition of ATPase activity. The presence of ATP during illumination prevents inhibition.3. 8-Azido-ATP and 4-chloro-7-nitrobenzofurazan (NbfCl) bind predominantly to the α subunit of the enzyme, but also significantly to the β subunit.4. The α subunit of E. coli F1 seems to have some properties that in other F1-ATPases are associated with the β subunit.  相似文献   

17.
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 ± 9 μmol Pi and 2.9 ± 0.6 μmol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 ± 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1–2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 × g × 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (μmol Pi/mg protein per h) 32 ± 9 (basal) and 86 ± 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (μmol p-nitrophenol/mg protein per h) 2.6 ± 0.5 (basal) and 22.2 ± 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 ± 0.041 (basal) and 0.057 ± 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.  相似文献   

18.
A membrane fraction enriched in axolemma was obtained from optic nerves of the squid (Sepiotheutis sepioidea) by differential centrifugation and density gradient fractionation. The preparation showed an oligomycin- and NaN3-insensitive (Ca2+ + Mg2+)-ATPase activity. The dependence of the ATPase activity on calcium concentration revealed the presence of two saturable components. One had a high affinity for calcium (K121 = 0.12 μM) and the second had a comparatively low affinity (K212 = 49.5 μM). Only the high-affinity component was specifically inhibited by vanadate (K1 = 35 μM). Calmodulin (12.5 μ/ml) stimulated the (Ca2+ + Mg2+)-ATPase by approx. 50%, and this stimulation was abolished by trifluoperazine (10 μM). Further treatment of the membrane fraction with 1% Nonidet P-40 resulted in a partial purification of the ATPase about 15-fold compared to the initial homogenate. This (Ca2+ + Mg2+)-ATPase from squid optic nerve displays some properties similar to those of the uncoupled Ca2+-pump described in internally dialyzed squid axons, suggesting that it could be its enzymatic basis.  相似文献   

19.
Cd2+, Mn2+, and Al3+ inhibited synaptosomal amine uptake in a concentration-dependent and time-dependent manner. In the absence of Ca2+, the rank order of inhibition of noradrenaline uptake was: Cd2+ (IC50 = 250 μM) > Al3+ (IC50 = 430 μM) > Mn2+ (IC50 = 1.50 mM), the IC50 being the concentration of metal ions that gave rise to 50% inhibition of uptake. In the presence of 1 mM Ca2+, the rank order of inhibition of uptake was: Al3+ (IC50 = 330 μM) > Cd2+ (IC50 = 540 μM) > (IC50 = 1.5 mM). The rank order of inhibition of serotonin uptake without Ca2+ was: Al3+ (IC50 = 370 μM) > Cd2+ (IC50 = 610 μM) > Mn2+ (IC50 = 3.4 mM) and the rank order in the presence of 1 mM Ca2+ was: Al3+ (IC50 = 290 μM) > Cd2+ (IC50 = 1.5 mM) > Mn2+ (IC50 = 4.0 mM). Ca2+, at 1 mM, definitely antagonized the inhibitory actions of Cd2+ on noradrenaline and serotonin uptake. Al3+ stimulated noradrenaline uptake at concentrations around 20–250 μM but inhibited this uptake at concentrations exceeding 300 μM in a dose-related fashion. Ca2+, at 1 mM, enhanced both the stimulatory and inhibitory effects of Al3+. Ca2+ also enhanced the inhibitory actions of Al3+ on seotonin uptake. These results, in conjunction with those we have previously published, suggest that Cd2+, Mn2+, and Al3+ exert differential and selective effects on the structure and function of synaptosomal membranes.  相似文献   

20.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号