首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
海平面上升影响下广西钦州湾红树林脆弱性评价   总被引:3,自引:0,他引:3  
李莎莎  孟宪伟  葛振鸣  张利权 《生态学报》2014,34(10):2702-2711
全球气候变化所导致的海平面上升等现象对海岸带产生显著影响。红树林是生长在热带、亚热带沿海潮间带的生态系统,对海平面上升极为敏感。以广西钦州湾红树林生态系统为对象,采用SPRC(Source-Pathway-Receptor-Consequence)评估模式分析了气候变化所导致的海平面上升对红树林生态系统的主要影响。构建了以海平面上升速率、地面沉降/抬升速率、生境高程、日均淹水时间、潮滩坡度和沉积速率为指标的脆弱性评价体系。在GIS平台上量化各脆弱性指标,计算脆弱性指数并分级,建立了定量评价红树林生态系统脆弱性方法,实现了在不同海平面上升情景(近40年来广西海平面平均上升速率、IPCC预测的B1和A1FI情景)和时间尺度下(2030年、2050和2100年),广西钦州湾红树林生态系统脆弱性的定量空间评价。研究结果表明,在近40年广西海平面平均上升速率与B1情景下,钦州湾红树林在各评估时段表现为不脆弱。而在A1FI情景下,至2050年研究区域41.3%红树林为低脆弱,至2100年增加至69.8%。研究采用的SPRC评估模型、脆弱性评价指标体系和定量空间评估方法能够客观定量评价气候变化所导致的海平面上升影响下红树林生态系统脆弱性,可为制定切实可行的应对措施和保障海岸带生态系统安全提供科学依据。  相似文献   

2.
气候变化背景下野生动物脆弱性评估方法研究进展   总被引:2,自引:2,他引:0  
李佳  刘芳  张宇  薛亚东  李迪强 《生态学报》2017,37(20):6656-6667
脆弱性评估是研究气候变化影响野生动物的重要内容,识别野生动物脆弱性,是适应和减缓气候变化影响的关键和基础。开展气候变化背景下野生动物的脆弱性评估工作,目的是为了确定易受气候变化影响的物种和明确导致物种脆弱性的因素,其评估结果有助于人类认识气候变化对野生动物的影响,为野生动物适应气候变化保护对策的制定提供科学依据。对野生动物而言(物种),脆弱性是物种受气候变化影响的程度,包括暴露度、敏感性和适应能力三大要素。其中,暴露度是由气候变化引起的外在因素,如温度、降雨量、极值天气等;敏感性是受物种自身因素影响,如种间关系、耐受性等;适应能力是物种通过自身调整来减小气候变化带来的影响,如迁移或扩散到适宜生境的能力、塑性反应和进化反应等。对近期有关气候变化背景下野生动物脆弱性评估方法予以综述,比较每种评估方法所选取指标的差异,总结在脆弱性评估中遇到的不确定性指标的处理方法,以及脆弱性评估结果在野生动物适应气候变化对策中的应用。通过总结野生动物脆弱性评估方法,以期为气候变化背景下评估我国野生动物资源的脆弱性提供参考方法。  相似文献   

3.
脆弱性评估在气候敏感性区域和行业适应气候变化研究中非常重要。本文采用参与式评估和行动影响矩阵确定了关键的脆弱性因子;使用层次分析法构建了脆弱性评估指标框架;利用脆弱性评估模型计算了内蒙古锡林郭勒草原畜牧业对干旱的脆弱性指数。结果表明:干旱是对草原畜牧业影响最严重和最广泛的气候事件,干旱通过影响草、畜、水等因子,影响牧民生计;而干旱对人体健康的影响往往被利益相关方忽视,畜牧业基础设施差和气候波动大的区域对气候变化更脆弱,在空间尺度和时间尺度上,适应能力的提高有效降低了草原畜牧业对干旱的脆弱性,适应对策的制定首先要提高适应能力,其次是降低敏感性和暴露度;牧民对气候变化适应能力的提高旨在保障牧民生计和生活质量,可以通过提高牧民收入、改善畜牧业基础设施和补饲能力等来实现。  相似文献   

4.
王文婷  杨婷婷  金磊  蒋家民 《生物多样性》2021,29(12):1620-1026
气候变化对全球的物种多样性有深远影响, 尤其是对高山物种多样性。研究未来气候变化下物种的灭绝风险对生物多样性保护具有重要的意义。本文针对青藏高原的2种重要药用植物大花红景天(Rhodiola crenulata)和菊叶红景天(R. chrysanthemifolia), 利用气候生态位因子分析法研究了它们对气候变化的敏感性、暴露性和脆弱性, 讨论了2种“共享社会经济途径” (SSP2-45和SSP5-85)情景下的未来气候对这2个物种脆弱性的影响。同时计算了2种红景天的气候生态位的边缘性和特化性, 通过主成分分析法对其气候生态位进行了二维可视化, 并分析了它们的气候变化脆弱性与气候生态位之间的关系。结果表明, 未来气候变化情景下2种红景天在其分布区都显示出西部脆弱性高而东部脆弱性低的特征, 而脆弱性都表现为较低的横断山脉地区将成为其未来气候避难所。2种红景天在SSP5-85气候情景下的脆弱性高于SSP2-45, 资源和能源密集型社会经济途径(即SSP5-85)将会增大物种的灭绝风险。此外, 被《中国物种红色名录》评估为无危的菊叶红景天的气候变化脆弱性反而大于被评估为濒危的大花红景天。生态位因子分析结果表明大花红景天的生态位边缘性和特化性都低于菊叶红景天, 研究推断同地区不同物种的气候变化脆弱性主要由物种的气候生态位决定。  相似文献   

5.
海平面上升影响下长江口滨海湿地脆弱性评价   总被引:2,自引:0,他引:2  
研究滨海湿地对气候变化的响应,评估气候变化对其影响,并提出切实可行的应对策略,是保障海岸带生态系统安全的重要前提.本研究以长江口滨海湿地为对象,采用“源-途径-受体-影响”模型和IPCC脆弱性定义分析了气候变化引起的海平面上升对滨海湿地生态系统的主要影响.构建了基于海平面上升速率、地面沉降速率、生境高程、生境淹水阈值和沉积速率为指标的脆弱性评价指标体系.在GIS平台上量化各脆弱性指标,计算脆弱性指数并分级,建立了海平面上升影响下滨海湿地生态系统脆弱性的定量空间评估方法,实现了在不同海平面上升情景(近30年长江口沿海平均海平面上升速率和IPCC排放情景特别报告中的A1F1情景)和时间尺度(2030和2050年)下,长江口滨海湿地生态系统脆弱性的定量空间评价.结果表明: 在近30年长江口平均海平面上升速率(0.26 cm·a-1)情景下,至2030年,研究区轻度脆弱和中度脆弱的滨海湿地分别占6.6%和0.1%;至2050年,轻度脆弱和中度脆弱的滨海湿地分别占9.8%和0.2%.在A1F1 (0.59 cm·a-1)情景下,至2030年,轻度脆弱和中度脆弱的滨海湿地面积比例分别为9.0%和0.1%;至2050年,轻度脆弱、中度脆弱和高度脆弱的面积比例分别为9.5%、1.0%和0.3%.
  相似文献   

6.
中国西南地区是全球生物多样性保护的重要地区之一.在全球气候变化背景下,该地区生态系统呈现出脆弱性增加的趋势.本研究基于生态系统总初级生产力(GPP),根据IPCC有关脆弱性的概念,计算西南地区生态系统的脆弱性,并分析了该区脆弱等级的空间分布格局,以及生态系统脆弱性与降水、温度、海拔、坡度和植被类型等因子间的相关性.结果表明: 西南地区生态系统脆弱性呈现由东南向西北逐渐增强的趋势,区域内多数地区为轻度、中度脆弱区(二者共占69%).脆弱等级随着区域内年平均降水量、多年平均温度的增加而减少,随着区域内海拔、坡度的增加而增加.西南喀斯特山区和西北山地农牧交错区呈现较高的脆弱性,更容易受气候变化或其他外界扰动的影响.针叶林、灌丛和草地的脆弱性相对较高,未来可能更容易受到气候变化的影响.  相似文献   

7.
鲁奇  李洁  刘冠  张艳如  李国庆 《生态学报》2023,43(8):3181-3191
气候变化威胁着全球生物多样性,评估物种脆弱性是研究气候变化对生物多样性影响的关键所在。目前多数研究主要通过物种适宜区面积变化来判断物种脆弱性,这单一维度会忽略其它因素的影响。采用多组分评估框架,将物种适宜区面积变化、生境破碎程度变化、受保护面积变化和人类干扰程度变化四个组分纳入物种总体脆弱性指数中,以中国具有较高经济和生态价值的山杏(Armeniaca sibirica)作为研究对象,评估未来(2061—2080年)三种共享社会经济路径(ssp)ssp126、ssp245、ssp585下山杏物种脆弱性。研究结果表明:未来山杏生境适宜区有向我国东北和西北方向扩张的趋势,扩张区面积明显大于消失区,这种差异化程度依赖于社会发展路径情景;未来适宜区内的保护区面积将由当前6.50×104km2增加到1.10×105km2(三种气候变化情景下的平均值),未来适宜生境破碎化程度将保持稳定,生境适宜区内的人类干扰强度将下降;各组分的比较中,受保护面积变化对山杏总体脆弱性的贡献将超过山杏适宜生境面积变化和其它组分的贡...  相似文献   

8.
 陆地生态系统对气候变化的响应及其脆弱性评价研究是当前全球变化领域的重要内容之一。该研究在生态系统过程模型的基础上,耦合了潜在 植被对气候变化的动态响应,模拟气候变化对潜在植被分布格局和生态系统主要功能的影响,以潜在植被的变化次数和变化方 向定义植被分布 对气候变化的敏感性和适应性,以生态系统功能特征量的年际变率及其变化趋势定义生态系统功能对气候变化的敏感性和适应性,进而对生态 系统的脆弱性进行定量评价,分析不同气候条件下我国陆地生态系统的脆弱性分布格局及其区域特点。结果表明,我国自然生态系统气候脆弱 性的总体特点为南低北高、东低西高,气候变化将会增加系统的脆弱性。采用政府间气候变化委员会排放情景特别报告国内和区域资源情景, 即IPCC-SRES-A2气候情景进行的预测模拟表明,到21世纪末我国不脆弱的生态系统比例将减少22%左右,高度脆弱和极度脆弱的生态系统所占的 比例较当前气候条件下分别减少1.3%和0.4%。气候变化对我国陆地生态系统的脆弱性分布格局影响不大。不同气候条件下,高度脆弱和极度脆 弱的自然生态系统主要分布在我国内蒙古、东北和西北等地区的生态过渡带上及荒漠-草地生态系统中。总体而言,华南及西南大部分地区的生 态系统脆弱性将随气候变化而有所增加,而华北及东北地区则有所减小。  相似文献   

9.
随着气候变化影响广度与深度的增加,生态系统脆弱性、适应性与突变理论逐渐被广泛应用到生态学研究领域中,探讨和评估各类生态系统对气候变化的敏感性、脆弱性和适应性,可谋求更好的方式来应对气候变化对区域生态系统带来的深远影响,服务于国家生态系统可持续管理及生态安全建设.虽然相关研究已获取许多进展,区分了气候敏感区和某些生态系统...  相似文献   

10.
自然生态系统响应气候变化的脆弱性评价研究进展   总被引:17,自引:10,他引:7  
以气候变暖为标志的全球气候变化已引起各国政府、国际组织和科学工作者的高度重视.气候变化给人类及自然生态系统带来的风险和危害日趋增大.生态系统脆弱性分析和评价是适应和减缓气候变化的关键和基础,已成为近年来气候变化领域和生态学领域的研究热点.目前国内外学者正在不同领域、不同空间尺度上开展响应气候变化的脆弱性评价,其中以自然生态系统为评价对象的脆弱性研究也有了长足的发展.本文通过对脆弱性的概念、气候变化脆弱性评价研究现状、自然生态系统响应气候变化的脆弱性定量评价方法的综述,探讨了该研究领域存在的问题和未来的发展前景.  相似文献   

11.
Tropical reforestation (TR) has been highlighted as an important intervention for climate change mitigation because of its carbon storage potential. TR can also play other frequently overlooked, but significant, roles in helping society and ecosystems adapt to climate variability and change. For example, reforestation can ameliorate climate‐associated impacts of altered hydrological cycles in watersheds, protect coastal areas from increased storms, and provide habitat to reduce the probability of species' extinctions under a changing climate. Consequently, reforestation should be managed with both adaptation and mitigation objectives in mind, so as to maximize synergies among these diverse roles, and to avoid trade‐offs in which the achievement of one goal is detrimental to another. Management of increased forest cover must also incorporate measures for reducing the direct and indirect impacts of changing climate on reforestation itself. Here we advocate a focus on “climate‐smart reforestation,” defined as reforesting for climate change mitigation and adaptation, while ensuring that the direct and indirect impacts of climate change on reforestation are anticipated and minimized.  相似文献   

12.
Livestock production is an important contributor to sustainable food security for many nations, particularly in low‐income areas and marginal habitats that are unsuitable for crop production. Animal products account for approximately one‐third of global human protein consumption. Here, a range of indicators, derived from FAOSTAT and World Bank statistics, are used to model the relative vulnerability of nations at the global scale to predicted climate and population changes, which are likely to impact on their use of grazing livestock for food. Vulnerability analysis has been widely used in global change science to predict impacts on food security and famine. It is a tool that is useful to inform policy decision making and direct the targeting of interventions. The model developed shows that nations within sub‐Saharan Africa, particularly in the Sahel region, and some Asian nations are likely to be the most vulnerable. Livestock‐based food security is already compromised in many areas on these continents and suffers constraints from current climate in addition to the lack of economic and technical support allowing mitigation of predicted climate change impacts. Governance is shown to be a highly influential factor and, paradoxically, it is suggested that current self‐sufficiency may increase future potential vulnerability because trade networks are poorly developed. This may be relieved through freer trade of food products, which is also associated with improved governance. Policy decisions, support and interventions will need to be targeted at the most vulnerable nations, but given the strong influence of governance, to be effective, any implementation will require considerable care in the management of underlying structural reform.  相似文献   

13.
Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species‐specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the ‘business‐as‐usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large‐bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks of exploited marine species using publicly and readily available information.  相似文献   

14.
An Integrated Risk Assessment for Climate Change (IRACC) is developed and applied to assess the vulnerability of sharks and rays on Australia's Great Barrier Reef (GBR) to climate change. The IRACC merges a traditional climate change vulnerability framework with approaches from fisheries ecological risk assessments. This semi‐quantitative assessment accommodates uncertainty and can be applied at different spatial and temporal scales to identify exposure factors, at‐risk species and their key biological and ecological attributes, critical habitats a`nd ecological processes, and major knowledge gaps. Consequently, the IRACC can provide a foundation upon which to develop climate change response strategies. Here, we describe the assessment process, demonstrate its application to GBR shark and ray species, and explore the issues affecting their vulnerability to climate change. The assessment indicates that for the GBR, freshwater/estuarine and reef associated sharks and rays are most vulnerable to climate change, and that vulnerability is driven by case‐specific interactions of multiple factors and species attributes. Changes in temperature, freshwater input and ocean circulation will have the most widespread effects on these species. Although relatively few GBR sharks and rays were assessed as highly vulnerable, their vulnerability increases when synergies with other factors are considered. This is especially true for freshwater/estuarine and coastal/inshore sharks and rays. Reducing the impacts of climate change on the GBR's sharks and rays requires a range of approaches including mitigating climate change and addressing habitat degradation and sustainability issues. Species‐specific conservation actions may be required for higher risk species (e.g. the freshwater whipray, porcupine ray, speartooth shark and sawfishes) including reducing mortality, preserving coastal catchments and estuarine habitats, and addressing fisheries sustainability. The assessment identified many knowledge gaps concerning GBR habitats and processes, and highlights the need for improved understanding of the biology and ecology of the sharks and rays of the GBR.  相似文献   

15.
Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies.  相似文献   

16.
Due to their position at the land‐sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea‐level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change‐related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea‐level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.  相似文献   

17.
Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号