首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present study focuses on the effect of various naturally occurring flavonoids (apigenin, galangin, morin, naringenin, quercetin, and silymarin) on nitric oxide (NO) and prostaglandin E2 (PGE2) production induced by lipopolysaccharide (LPS) in the macrophage cell line J774A.1. Moreover, we evaluated flavonoid modulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) enzyme expression by western blot analysis. Apigenin and quercetin (0.5-50 microM) were the most potent inhibitors of NO production and this effect was concentration-dependent and significant at 5 and 50 microM. These data were consistent with the modulation of iNOS enzyme expression. A similar pattern was observed considering the inhibitory effect of flavonoids on LPS-induced PGE2 release and COX-2 expression. Quercetin, galangin, apigenin, and naringenin markedly decreased PGE2 release and COX-2 expression in a concentration-dependent manner. This study suggests that inhibition of iNOS and COX-2 expression by flavonoids may be one of the mechanisms responsible for their anti-inflammatory effects.  相似文献   

2.
We have examined the effect of several flavonoids on the activity of phosphorylase kinase from rabbit skeletal muscle. From 14 flavonoids tested, the flavones quercetin and fisetin were found to be efficient inhibitors of nonactivated phosphorylase kinase when assayed at pH 8.2, causing 50% inhibition at a concentration of about 50 microM, while the flavanone hesperetin stimulated phosphorylase kinase activity about 2-fold when tested at 250 microM. The efficiency of quercetin in inhibiting the kinase is higher when the enzyme is stimulated either by ethanol or by alkaline pH. Both casein and troponin phosphorylation by phosphorylase kinase and the autophosphorylation of the kinase were inhibited by quercetin. In addition, quercetin was found to be a competitive inhibitor of ATP for the phosphorylation of phosphorylase b at pH 8.2. These observations suggest that the inhibitory effect of the flavone is directly on the phosphorylase kinase molecule. Trypsin-activated phosphorylase kinase was inhibited by quercetin and stimulated by hesperetin, as for the native enzyme.  相似文献   

3.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 microM, morin and rutin had similar effects at concentrations of about 200 microM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin greater than morin greater than rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

4.
Flavonoids are a group of polyphenolic compounds ubiquitously found in plants including fruits, and vegetables. Broad ranges of the biological activities of flavonoids have been reported using in vitro studies. I report that several natural flavonoids blocked glucose uptake in myelocytic U937 cells. Although there were some variations in the blocking activity of individual flavonoids, approximately half of the glucose uptake was blocked by flavonoids at the concentrations of 8-50 microM. The decreasing order of the blocking activity was fisetin >/= myricetin >/= quercetin >/= apigenin > genistein > cyanidin > daidzein >/= hesperetin > naringenin > catechin. Fisetin showed approximately 50% inhibition of glucose uptake at a concentration of 8 microM. Similar patterns of the inhibition were observed in lymphocytic Jurkat cells. Fisetin and quercetin inhibited glucose transport in a competitive manner. K(i) values for fisetin and quercetin were proximately 9 and 12 microM, respectively. This study showed that some types of natural flavonoids block glucose uptake in U937 cells and that natural flavonoids could be used as alternative blockers of glucose uptake in vitro.  相似文献   

5.
There is much interest in the bioactivity of in vivo flavonoid metabolites. We report for the first time the hierarchy of reactivity of flavonoid metabolites with peroxynitrite and characterise novel reaction products. O-Methylation of the B-ring catechol containing flavonoids epicatechin and quercetin, and O-glucuronidation of all flavonoids reduced their reactivity with peroxynitrite. The reaction of the flavanones hesperetin and naringenin and their glucuronides resulted in the formation of multiple mono-nitrated and nitrosated products. In contrast, the catechol-containing flavonoids epicatechin and quercetin yielded oxidation products which when trapped with glutathione led to the production of glutathionyl-conjugates. However, the O-methylated metabolites of epicatechin yielded both mono- and di-nitrated products and nitrosated metabolites. The 3'-O-methyl metabolite of quercetin also yielded a nitrosated species, although its counterpart 4'-O-methyl quercetin yielded only oxidation products. Such products may represent novel metabolic products in vivo and may also express cellular activity.  相似文献   

6.
The citrus flavonoids, naringenin and hesperetin, lower plasma cholesterol in vivo. However, the underlying mechanisms are not fully understood. The ability of these flavonoids to modulate apolipoprotein B (apoB) secretion and cellular cholesterol homeostasis was determined in the human hepatoma cell line, HepG2. apoB accumulation in the media decreased in a dose-dependent manner following 24-h incubations with naringenin (up to 82%, P < 0.00001) or hesperetin (up to 74%, P < 0.002). Decreased apoB secretion was associated with reduced cellular cholesteryl ester mass. Cholesterol esterification was decreased, dose-dependently, up to 84% (P < 0.0001) at flavonoid concentrations of 200 microM. Neither flavonoid demonstrated selective inhibition of either form of acyl CoA:cholesterol acyltransferase (ACAT) as determined using CHO cells stably transfected with either ACAT1 or ACAT2. However, in HepG2 cells, ACAT2 mRNA was selectively decreased (- 50%, P < 0.001) by both flavonoids, whereas ACAT1 mRNA was unaffected. In addition, naringenin and hesperetin decreased both the activity (- 20% to - 40%, P < 0.00004) and expression (- 30% to - 40%, P < 0.02) of microsomal triglyceride transfer protein (MTP). Both flavonoids caused a 5- to 7-fold increase (P < 0.02) in low density lipoprotein (LDL) receptor mRNA, which resulted in a 1.5- to 2-fold increase in uptake and degradation of (125)I-LDL. We conclude that both naringenin and hesperetin decrease the availability of lipids for assembly of apoB-containing lipoproteins, an effect mediated by 1) reduced activities of ACAT1 and ACAT2, 2) a selective decrease in ACAT2 expression, and 3) reduced MTP activity. Together with an enhanced expression of the LDL receptor, these mechanisms may explain the hypocholesterolemic properties of the citrus flavonoids.  相似文献   

7.
The in vitro effects of several flavonoids on nonenzymatic lipid peroxidation in the rat brain mitochondria was studied. The lipid peroxidation was indexed by measuring the MDA production using the 2-thiobarbituric acid TBA test. The flavonoids, apigenin, flavone, flavanone, hesperidin, naringin, and tangeretin promoted the ascorbic acid-induced lipid peroxidation, the extent of which depended upon the concentration of the flavonoid and ascorbic acid. The other flavonoids studied, viz., quercetin, quercetrin, rutin, taxifolin, myricetin, myricetrin, phloretin, phloridzin, diosmetin, diosmin, apiin, hesperetin, naringenin, (+)-catechin, morin, fisetin, chrysin, and 3-hydroxyflavone, all showed varying extents of inhibition of the nonenzymatic lipid peroxidation, induced by either ascorbic acid or ferrous sulfate. The flavonoid aglycones were more potent in their antiperoxidative action than their corresponding glycosides. Structure-activity analysis revealed that the flavonoid molecule with polyhydroxylated substitutions on rings A and B, a 2,3-double bond, a free 3-hydroxyl substitution and a 4-keto moiety, would confer upon the compound potent antiperoxidative properties.  相似文献   

8.
In this study three feed additives (hesperetin, naringenin and pectin) for laying hens were investigated on their influence on the egg yolk cholesterol, serum traits and antioxidant activities in hens. Additives were extracted from citrus and grapefruit peels and contained 31.5% crude hesperetin, 39% crude naringenin and 60% galacturonic acid (pectin). Eighty 30-week-old Leghorn laying hens were randomly assigned to four groups and received, for two months, a control diet or diets with 0.05% hesperetin, 0.05% naringenin or 0.5% pectin. All additives reduced the egg yolk cholesterol level significantly. Feeding diets with added flavonoids (hesperetin and naringenin) increased the yolk weight and the ratio of yolk weight/egg weight and the blood serum superoxide dismutase (SOD) activity was elevated. Total antioxidation capacity, the level of thiobarbituric acid-reactive substances and superoxide scavenging capacity in the naringenin group were greater than in the control group. Supplemented flavonoids reduced the serum cholesterol level significantly, while serum triglyceride concentration in the naringenin and pectin groups was reduced. Addition of flavonoids resulted in an enhanced cholesterol level in excreta. The results of this study indicated that intake of hesperetin, naringenin and pectin extracted from citrus and grapefruit peel in laying hens diet, may exhibit positive effects.  相似文献   

9.
Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.)   总被引:1,自引:0,他引:1  
Selected flavonoids that are known as inducers and a suppressor of nodulation (nod) genes of the symbiotic bacterium Rhizobium leguminosarum bv. viciae were tested for their effect on symbiosis formation with garden pea as the host. A solid substrate was omitted from the hydroponic growing system in order to prevent losses of flavonoids due to adsorption and degradation. The presumed interaction of the tested flavonoids with nod genes has been verified for the genetic background of strain 128C30. A stimulatory effect of a nod gene inducer naringenin on symbiotic nodule number formed per plant 14 d after inoculation was detected at concentrations of 0.1 and 1 micro g ml(-1) nutrient solution. At 10 micro g ml(-1), the highest concentration tested, naringenin was already inhibitory. By contrast, nodulation was negatively affected by a nod gene suppressor, quercetin, at concentrations above 1 micro g ml(-1), as well as by another tested nod gene inducer, hesperetin. The deleterious effect of hesperetin might be due to its toxicity or to the toxicity of its degradation product(s) as indicated by the inhibition of root growth. Both the stimulatory effect of naringenin and the inhibitory effect of quercetin on nodule number were more pronounced at earlier stages of nodule development as revealed with specific staining of initial nodules. The lessening of the flavonoid impact during nodule development was ascribed to the plant autoregulatory mechanisms. Feedback regulation of nodule metabolism might also be responsible for the fact that the naringenin-conditioned increase in nodule number was not accompanied by any increase in nitrogenase activity. By contrast, the inhibitory action of quercetin and hesperetin on nodule number was associated with decreases in total nitrogenase activity. Naringenin also stimulated root hair curling (RHC) as one of the earliest nodulation responses at concentrations of 1 and 10 microg ml(-1), however, the same effect was exerted by the nod gene suppressor, quercetin, suggesting that feedback regulatory mechanisms control RHC in the range of nodulation-inhibiting high flavonoid concentrations. The comparison of the effect of the tested flavonoids in planta with nod gene activity response showed a two orders of magnitude shift to higher concentrations. This shift is explained by the absorption and degradation of flavonoids by both the symbionts during 3 d intervals between hydroponic solution changes. The losses were 99, 96.4, and 90% of the initial concentration of 10 micro g ml(-1) for naringenin, hesperetin, and quercetin, respectively.  相似文献   

10.
Human red blood cell membrane Ca2+-ATPase activity is stimulated in vitro by physiological concentrations of thyroid hormone. Quercetin, a flavonoid that inhibits several membrane-linked ATPases, suppressed thyroid hormone action on red cell Ca2+-ATPase activity and also interfered with binding of the hormone by red cell membranes. These effects of quercetin were dose-dependent over a range of concentrations (1-50 microM). In contrast, in the absence of thyroid hormone, quercetin at low concentrations stimulated Ca2+-ATPase activity and at 50 microM inhibited the enzyme. The effects of quercetin at low concentrations (1-10 microM), namely, stimulation of Ca2+-ATPase and inhibition of membrane-binding of thyroid hormone, mimic those of thyroid hormone and are consistent with the thyronine-like structure of quercetin. At high concentrations, quercetin is generally inhibitory of Ca2+-ATPase activity. Chalcone, fisetin, hesperetin and tangeretin are other flavonoids shown to reduce susceptibility of membrane Ca2+-ATPase to hormonal stimulation.  相似文献   

11.
Oxidative modification of low density lipoprotein (LDL) may play an important role in the development of atherosclerosis. Alpha-tocopherol functions as a major antioxidant in human LDL. The present study was to test whether four natural flavonoids (kempferol, morin, myricetin, and quercetin) would protect or regenerate alpha-tocopherol in human LDL. The oxidation of LDL incubated in sodium phosphate buffer (pH 7.4, 10 mM) was initiated by addition of either 5.0 mM CuSO(4) at 37 degrees C or 1.0 mM of 2,2'-azo-bis (2-amidinopropane) dihydrochloride (AAPH) at 40 degrees C. It was found that alpha-tocopherol was completely depleted within 1 hour. Under the same experimental conditions, all four flavonoids demonstrated a dose-dependent protecting activity to alpha-tocopherol in LDL at the concentration ranging from 1 to 20microM. All flavonoids showed a varying protective activity against depletion of alpha-tocopherol in LDL, with kempherol and morin being less effective than myricetin and quercetin. The addition of flavonoids to the incubation mixture after 5 minutes demonstrated a significant regeneration of alpha-tocopherol in human LDL. The protective activity of four flavonoids to LDL is related to the number and location of hydroxyl groups in the B ring as well as the stability in sodium phosphate buffer.  相似文献   

12.
The antibacterial activities of flavonoids were found by the paper disk method to be enhanced by combining or mixing them. The combinations of quercetin and quercitrin, quercetin and morin, and quercetin and rutin were much more active than either flavonoid alone. Although rutin did not show activity in itself, the antibacterial activities of quercetin and morin were enhanced in the presence of rutin. The antibacterial activities of flavonoids, in combination with morin and rutin, were evaluated, based on the minimum inhibition concentration (MIC) in a liquid culture, by using Salmonella enteritidis and Bacillus cereus as the test bacteria. The activities of galangin, kaempherol, myricetin and fisetin were each enhanced in the presence of rutin when S. enteritidis was used as the test bacterium. The MIC value for kaempherol was markedly decreased by the addition of rutin. Morin inhibited DNA synthesis, and this effect was promoted by rutin at a concentration of 25 microg/ml.  相似文献   

13.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

14.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

15.
The influence of nineteen flavonoids on cow’s milk xanthine oxidase (xanthine: oxygen oxidoreductase, EC 1.2.3.2) was investigated. The enzyme activity was estimated by measuring the increase in absorbance at 290 nm due to uricate formation as well as by a colorimetric method assaying hydrogen peroxide generated from uricate by uricase. Among the flavonoids tested, myricetin, kaempferol, quercetin, fisetin, quercitrin, and morin inhibited the enzyme strongly at 50 μm; the concentrations which gave 50% inhibition (ID50) were 2, 2, 3, 7, 15, and 19μm, respectively. The inhibition mode of the former three compounds was of mixed type and the kinetic parameters were determined. Chrysin and naringenin were moderately inhibitory, while other flavonoids showed weak to no inhibition.  相似文献   

16.
The plant flavonoids quercetin (3,5,7,3',4'-pentahydroxyflavone), morin (3,5,7,2',4'-pentahydroxyflavone), kaempferol (3,5,7,4'-tetrahydroxyflavone), chrysin (5,7-dihydroxyflavone), fisetin (3,7,3',4'-tetrahydroxyflavone), myricetin (3,5,7,3',4',5'-hexahydroxyflavone), myricitrin (myricetin-3-rhamnoside), hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone), quercitrin (quercetin-3-L-rhamnoside), rutin (quercetin-3-rhamnosylglucoside or quercetin-3-rutinoside), and hesperidin (hesperetin-7-rutinoside) have been assayed for mutagenicity in the Salmonella/microsomal activation system. Quercetin, morin, kaempferol, fisetin, myricetin, quercitrin and rutin were mutagenic in the histidine reversion system with the frameshift strain TA98. The flavonols quercetin and myricetin are mutagenic without metabolic activation, although more effective when a rat liver microsomal preparation (S-9) is included; all others require metabolic activation. Flavonoids are common constituents of higher plants, with extensive medical uses. In addition to pure compounds, we have examined crude extracts of tobacco (snuff) and extracts from commonly available nutritional supplements containing rutin. Mutagenic activity can be detected and is correlated with the flavonoid content.  相似文献   

17.
AIMS: To evaluate the antimicrobial properties of flavonoid-rich fractions derived from bergamot peel, a byproduct from the Citrus fruit processing industry and the influence of enzymatic deglycosylation on their activity against different bacteria and yeast. METHODS AND RESULTS: Bergamot ethanolic fractions were tested against Gram-negative bacteria (Escherichia coli, Pseudomonas putida, Salmonella enterica), Gram-positive bacteria (Listeria innocua, Bacillus subtilis, Staphylococcus aureus, Lactococcus lactis) and the yeast Saccharomyces cerevisiae. Bergamot fractions were found to be active against all the Gram-negative bacteria tested, and their antimicrobial potency increased after enzymatic deglycosylation. The minimum inhibitory concentrations of the fractions and the pure flavonoids, neohesperidin, hesperetin (aglycone), neoeriocitrin, eriodictyol (aglycone), naringin and naringenin (aglycone), were found to be in the range 200 to 800 microg ml(-1). The interactions between three bergamot flavonoids were also evaluated. CONCLUSION: The enzyme preparation Pectinase 62L efficiently converted common glycosides into their aglycones from bergamot extracts, and this deglycosylation increased the antimicrobial potency of Citrus flavonoids. Pairwise combinations of eriodictyol, naringenin and hesperetin showed both synergistic and indifferent interactions that were dependent on the test indicator organism. SIGNIFICANCE AND IMPACT OF THE STUDY: Bergamot peel is a potential source of natural antimicrobials that are active against Gram-negative bacteria.  相似文献   

18.
Cancer therapy with daunorubicin is limited by its cardiotoxicity. It has been suggested that daunorubicin-induced free radical generation can be involved. The precise molecular mechanism of daunorubicin-induced cardiotoxicity is still not well understood but it is believed that mitochondria play an important role in this process. It has been reported that flavonoids with antioxidant properties may prevent anthracycline-induced cardiotoxicity. In this work, we investigated the effects of daunorubicin and quercetin on mitochondrial enzyme activities such as ATPase, glutathione peroxidase (GPx) and glutathione reductase (GR). Moreover, we also studied the changes of outer mitochondrial membrane using synchronous fluorescence spectra. The activity of ATPase and GR were significantly increased after daunorubicin application. Pretreatment with quercetin significantly alleviated this increase. On the other hand, GPx activity was significantly decreased and quercetin prevented this decrease. Treatment with quercetin alone had no significant effect on the enzyme activity studied. Quercetin also completely prevented daunorubicin-induced changes in fluorescence of the outer mitochondrial membrane. In conclusion, our data indicate that quercetin may be useful in mitigating daunorubicin-induced cardiotoxicity.  相似文献   

19.
Among the structurally related flavonoids tested on the bovine kidney low molecular weight protein tyrosine phosphatase (LMrPTP) activity, quercetin activated by about 2.6-fold the p-nitrophenyl-phosphate (p-NPP)-directed reaction, in contrast to morin that acted as a competitive inhibitor, with Ki values of 87, 73 and 50 microM for p-NPP, FMN, and tyrosine-phosphate, respectively. Other related flavonoids, such as rutin, kaempferol, catechin, narigin, phloretin and taxifolin did not significantly affect the LMrPTP activity. The positions of the hydroxyl groups in the structures of the flavonoids were important for their distinct effects on LMrPTP activity. The hydroxyl groups at C3' and C4' and the presence of a double bond at C2 and C3 were essential for the activating effect of quercetin. The absence of the 3'-OH (kaempferol), absence of the double bond (taxifolin) and the presence of the sugar rutinose at the 3-OH (rutin) suppressed the effect of quercetin. The C2'- and C4'-hydroxyl groups, the presence of the double bond, and a C4-ketone group were important requirements for the inhibitory effects of morin.  相似文献   

20.
There is considerable current interest in the neuroprotective effects of flavonoids. This study focuses on the potential for dietary flavonoids, and their known physiologically relevant metabolites, to enter the brain endothelium and cross the blood-brain barrier (BBB) using well-established in vitro models (brain endothelial cell lines and ECV304 monolayers co-cultured with C6 glioma cells). We report that the citrus flavonoids, hesperetin, naringenin and their relevant in vivo metabolites, as well as the dietary anthocyanins and in vivo forms, cyanidin-3-rutinoside and pelargonidin-3-glucoside, are taken up by two brain endothelial cell lines from mouse (b.END5) and rat (RBE4). In both cell types, uptake of hesperetin and naringenin was greatest, increasing significantly with time and as a function of concentration. In support of these observations we report for the first time high apparent permeability (Papp) of the citrus flavonoids, hesperetin and naringenin, across the in vitro BBB model (apical to basolateral) relative to their more polar glucuronidated conjugates, as well as those of epicatechin and its in vivo metabolites, the dietary anthocyanins and to specific phenolic acids derived from colonic biotransformation of flavonoids. The results demonstrate that flavonoids and some metabolites are able to traverse the BBB, and that the potential for permeation is consistent with compound lipophilicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号