首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mast cell-based biosensor has been developed to enable the use of these cells in numerous applications including pharmaceutical screening, environmental monitoring, clinical diagnosis and homeland security. Rat basophilic leukemia (RBL) mast cells offer excellent potential for biosensor applications because they are robust and undergo a dramatic exocytotic response within minutes of antigen addition. To monitor mast cell activation, fluorescent dyes were loaded into the cells and used as indicators of alkalinization of secretory granules, calcium fluxes or generation of reactive oxygen species. These fluorescence assays efficiently measure activation of antigen-stimulated RBL mast cells, detecting the antigen with picomolar sensitivity. To demonstrate the utility of this mast cell-based biosensor for detection of microbial pathogens, an IgE chimeric protein was created by fusing the Fc region of the IgE antibody to CD14, a receptor for lipopolysaccharide. This chimeric protein has the capacity to bind to Escherichia coli and Listeria monocytogenes and also to IgE receptors on the mast cells, thereby stimulating a signaling response to bacteria. RBL mast cells labeled with the calcium indicator Fluo-4 are shown to be responsive to E. coli, only when sensitized with the chimeric protein, thus demonstrating a highly versatile biosensor for bacterial contamination.  相似文献   

2.
Hrs binding protein (Hbp) tightly associated with Hrs is thought to play a regulatory role in vesicular trafficking during endocytosis and exocytosis. In this study, we have expressed dominant-negative mutants of Hbp to evaluate their effects on the degranulation of secretory granules in RBL-2H3 mast cells. The dominant-negative mutants of Hbp significantly inhibited IgE receptor (FcepsilonRI)-triggered secretory response as tested by beta-hexosaminidase release. These results suggest that Hbp functions as a regulator in the FcepsilonRI-triggered degranulation of secretory granules in mast cells.  相似文献   

3.
Mast cells possess specialized granules that, upon stimulation of surface FcR with IgE, fuse with the plasma membrane, thereby releasing inflammatory mediators. A family of membrane fusion proteins called SNAREs, which are present on both the granule and the plasma membrane, plays a role in the fusion of these granules with the plasma membrane of mast cells. In addition to the SNAREs themselves, it is likely that the SNARE accessory protein, N-ethylmaleimide-sensitive factor (NSF), affects the composition and structure of the SNARE complex. NSF is a cytoplasmic ATPase that disassembles the SNARE complexes. To investigate the role of NSF in mast cell degranulation, we developed an assay to measure secretion from transiently transfected RBL (rat basophilic leukemia)-2H3 mast cells (a tumor analog of mucosal mast cells). RBL-2H3 cells were cotransfected with a plasmid encoding a human growth hormone secretion reporter along with either wild-type NSF or an NSF mutant that lacks ATPase activity. Human growth hormone was targeted to and released from secretory granules in RBL-2H3 cells, and coexpression with mutant NSF dramatically inhibited regulated exocytosis from the transfected cells. Biochemical analysis of SNARE complexes in these cells revealed that overexpression of the NSF mutant decreased disassembly and resulted in an accumulation of SNARE complexes. These data reveal a role for NSF in mast cell exocytosis and highlight the importance of SNARE disassembly, or priming, in regulated exocytosis from mast cells.  相似文献   

4.
BACKGROUND: Mast cells are primary mediators of allergic inflammation. Antigen-mediated crosslinking of their cell surface immunoglobulin E (IgE) receptors results in degranulation and the release of proinflammatory mediators including histamine, tumor necrosis factor-alpha, and leukotrienes. METHODS: Mast cells were stimulated to degranulate by using either IgE crosslinking or ionophore treatment. Exogenously added annexin-V was used to stain exocytosing granules, and the extent of binding was measured flow cytometrically. Release of the enzyme beta-hexosaminidase was used for population-based measurements of degranulation. Two known inhibitors of degranulation, the phosphatidylinositol 3 kinase inhibitor wortmannin and overexpression of a mutant rab3d protein, were used as controls to validate the annexin-V binding assay. RESULTS: Annexin-V specifically bound to mast cell granules exposed after stimulation in proportion to the extent of degranulation. Annexin-V binding was calcium dependent and was blocked by phosphatidylserine containing liposomes, consistent with specific binding to this membrane lipid. Visualization of annexin-V staining showed granular cell surface patches that colocalized with the exocytic granule marker VAMP-green fluorescent protein (GFP). Wortmannin inhibited both annexin-V binding and beta-hexosaminidase release in RBL-2H3 cells, as did the expression of a dominant negative rab3d mutant protein. CONCLUSIONS: The annexin-V binding assay represents a powerful new flow cytometric method to monitor mast cell degranulation for functional analysis.  相似文献   

5.
A direct, rapid, quantitative colorimetric assay to determine neutrophil primary granule degranulation was adapted for use with fathead minnow kidney neutrophils. The assay measures the exocytosis of myeloperoxidase (MPO) using 3,3',5,5'-tetramethylbenzidine as a substrate. The assay was validated by comparing the total myeloperoxidase content of neutrophil populations obtained from adult cattle, as a known positive, and fish; evaluating the effects of calcium ionophore (CaI), phorbol myristate acetate (PMA), aqueous solution of beta-glucan (MGAQ) and zymosan (Z) with and without cytochalasin B (cyto B) as stimulants of degranulation; determining the kinetics of primary granule exocytosis and detecting changes in degranulation when fish were exposed to stress and anaesthesia with MS-222. The MPO assay detected MPO activity in fathead minnow neutrophils that correlated to neutrophil numbers, confirmed that degranulation was increased when CaI was used compared to other stimulants, determined degranulation peak at 60 min and confirmed decreased degranulation after exposure to handling and crowding stress, with and without MS-222. Therefore, the MPO assay is capable of detecting important differences that may occur in degranulation of fathead minnow kidney neutrophil primary granules and in total neutrophil myeloperoxidase content.  相似文献   

6.
7.
Helicobacter pylori (H. pylori) induces severe inflammation and plays a key role in gastric mucosal diseases. In general, mast cells have been believed to play an important role in inflammation. Although mast cells were detected in the gastric mucosa, the role of mast cells in the gastric mucosal inflammation caused by H. pylori is still unclear. Therefore, we examined the effects of H. pylori water extract on the degranulation of mast cells to clarify the role of these cells in gastric mucosal inflammation induced by H. pylori. Mast cells prepared from rat abdominal cavity were incubated with H. pylori for 30 min. The protein concentrations of H. pylori water extract used in this study were 0.5-3 mg/ml. The degranulation of mast cells were monitored morphologically by phase contrast microscopy equipped with time-lapse video recording system and biochemically by measuring histamine and beta-hexosaminidase. H. pylori water extract induced the degranulation of mast cells dose-dependently. The identical experiment was performed without extracellular calcium, and no significant degranulation was found. The data indicates that the degranulation of mast cells by H. pylori water extract depend on extracellular calcium. The present results indicate that H. pylori might be involved in the gastric mucosal inflammation as a trigger of mast cell degranulation for releasing chemical mediators.  相似文献   

8.
Exposure at 37 degrees C of rat serosal mast cells (RSMC) to chymase, an endogenous secretory granule serine protease, results in exocytosis as determined by the release of another secretory granule enzyme, beta-hexosaminidase. Chymase-mediated RSMC degranulation does not occur at 1 degree C; however, exposure of RSMC to chymase at 1 degree C followed by the removal of buffer and the resuspension of the cells in buffer alone at 37 degrees C results in exocytosis equivalent to that obtained by direct exposure of RSMC to chymase at 37 degrees C. Maximal chymase-mediated RSMC degranulation at 37 degrees C is Ca2+-dependent and Mg2+-independent. The dose-dependent degranulation-inducing interaction of chymase and alpha-chymotrypsin with RSMC at 1 degree C is Ca2+-independent, whereas subsequent exocytosis at 37 degrees C in new buffer without added enzyme still requires Ca2+. Specific binding of 125I-labeled alpha-chymotrypsin to RSMC does not occur at 1 degree C, implying that the inducing action of chymase is not a simple ligand-receptor binding. The enzyme inhibitors diisopropyl fluorophosphate and lima bean trypsin inhibitor inhibit subsequent exocytosis at 37 degrees C only if they are added within the first 10 min of the interaction of RSMC and chymase at 1 degree C, implying that an active site-dependent inducing event occurs between RSMC and chymase at 1 degree C. Thus, chymase-induced coupled activation-secretion can be divided into a cation- and temperature-independent initiation phase, which is dependent on the active site of exogenously added chymase and a subsequent temperature-dependent and calcium-augmented cellular secretion phase.  相似文献   

9.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here.Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.  相似文献   

10.
Mast cells are the principal effector cells involved in the allergic response, through the release of histamine. We investigated the effect of eriodictyol, derived from the painted maple and yerba santa, on mast cell degranulation and on an allergic response in an animal model. We also investigated its effect on the expression of the ceramide kinase (CERK) involved in calcium-dependent degranulation, and on ceramide activation by multiple cytokines. Eriodictyol suppressed the release of beta-hexosaminidase, a marker of degranulation, and the expression of interleukin (IL)-4 mRNA. It inhibited the expression of CERK mRNA, reduced the ceramide concentration in antigen-stimulated mast cells, and suppressed the passive cutaneous anaphylaxis (PCA) reaction in mice in a dose-dependent manner. These results suggest that eriodictyol can inhibit mast cell degranulation through inhibition of ceramide kinase, and that it might potentially serve as an anti-allergic agent.  相似文献   

11.
Regulated exocytosis is a process in which a physiological trigger initiates the translocation, docking, and fusion of secretory granules with the plasma membrane. A class of proteins termed SNAREs (including SNAP-23, syntaxins, and VAMPs) are known regulators of secretory granule/plasma membrane fusion events. We have investigated the molecular mechanisms of regulated exocytosis in mast cells and find that SNAP-23 is phosphorylated when rat basophilic leukemia mast cells are triggered to degranulate. The kinetics of SNAP-23 phosphorylation mirror the kinetics of exocytosis. We have identified amino acid residues Ser(95) and Ser(120) as the major phosphorylation sites in SNAP-23 in rodent mast cells. Quantitative analysis revealed that approximately 10% of SNAP-23 was phosphorylated when mast cell degranulation was induced. These same residues were phosphorylated when mouse platelet degranulation was induced with thrombin, demonstrating that phosphorylation of SNAP-23 Ser(95) and Ser(120) is not restricted to mast cells. Although triggering exocytosis did not alter the absolute amount of SNAP-23 bound to SNAREs, after stimulation essentially all of the SNAP-23 bound to the plasma membrane SNARE syntaxin 4 and the vesicle SNARE VAMP-2 was phosphorylated. Regulated exocytosis studies revealed that overexpression of SNAP-23 phosphorylation mutants inhibited exocytosis from rat basophilic leukemia mast cells, demonstrating that phosphorylation of SNAP-23 on Ser(120) and Ser(95) modulates regulated exocytosis by mast cells.  相似文献   

12.
13.
Mast cells are the principal effector cells involved in the allergic response, through the release of histamine. We investigated the effect of eriodictyol, derived from the painted maple and yerba santa, on mast cell degranulation and on an allergic response in an animal model. We also investigated its effect on the expression of the ceramide kinase (CERK) involved in calcium-dependent degranulation, and on ceramide activation by multiple cytokines. Eriodictyol suppressed the release of beta-hexosaminidase, a marker of degranulation, and the expression of interleukin (IL)-4 mRNA. It inhibited the expression of CERK mRNA, reduced the ceramide concentration in antigen-stimulated mast cells, and suppressed the passive cutaneous anaphylaxis (PCA) reaction in mice in a dose-dependent manner. These results suggest that eriodictyol can inhibit mast cell degranulation through inhibition of ceramide kinase, and that it might potentially serve as an anti-allergic agent.  相似文献   

14.
We developed a confocal real-time imaging approach that allows direct observation of the subcellular localization pattern of proteins involved in proximal FcepsilonRI signaling in RBL cells and primary bone marrow-derived mast cells. The adaptor protein Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is critical for FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. In this study, we imaged SLP-76 and found it in the cytosol of unstimulated cells. Upon FcepsilonRI cross-linking, SLP-76 translocates to the cell membrane, forming clusters that colocalize with the FcepsilonRI, the tyrosine kinase Syk, the adaptor LAT, and phosphotyrosine. The disruption of the SLP-76 interaction with its constitutive binding partner, Gads, through the mutation of SLP-76 or the expression of the Gads-binding region of SLP-76, inhibits the translocation and clustering of SLP-76, suggesting that the interaction of SLP-76 with Gads is critical for appropriate subcellular localization of SLP-76. We further demonstrated that the expression of the Gads-binding region of SLP-76 in bone marrow-derived mast cells inhibits FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. These studies revealed, for the first time, that SLP-76 forms signaling clusters following FcepsilonRI stimulation and demonstrated that the Gads-binding region of SLP-76 regulates clustering of SLP-76 and FcepsilonRI-induced mast cell responses.  相似文献   

15.
It has been hypothesized that the dissolution of mast cell granules at the time of degranulation results from proteoglycan cleavage coupled to exocytosis. To address this hypothesis, we studied granule proteoglycan before and after exocytosis in dog mastocytoma cells, which solubilize granule contents during exocytosis. 35S-labeled proteoglycans were extracted from unstimulated whole cells and cell degranulation supernatant. Sequential anion-exchange and gel filtration chromatography, followed by specific glycosaminoglycan digestion, identified chondroitin sulfate and heparin glycosaminoglycan and proteoglycan in unstimulated cells and degranulated material alike. Glycosaminoglycan type and charge density in degranulation supernatant were unchanged compared with unstimulated cells. There was no decrease in proteoglycan size with cell activation and exocytosis. Thus, granule release and solubilization does not appear to require exocytosis-coupled degradation of granule proteoglycans. Release in association with high-m.w. proteoglycans may serve to limit rates of diffusion and activity of proteases and other mast cell mediators.  相似文献   

16.
Synaptosomal-associated protein of 23 kDa (SNAP-23) plays an important role during regulated exocytosis of various inflammatory mediators, stored in secretory granules, from mast cells in response to physiological triggers. It is however synthesized as a soluble protein, and the mechanisms by which free SNAP-23 gets peripherally associated with membrane for the regulation of exocytosis, are poorly defined. SNAP-23 contains a hydrophobic domain with five closely spaced cysteines which get palmitoylated, and we show that SNAP-23 cysteine mutants show differential membrane association when transfected in rat basophilic leukemia (RBL) mast cells. SNAP-23 Cys mutant, devoid of all five cysteines, and SNAP-23 P119A (proline to alanine) mutant, that likely interferes with palmitoylation of SNAP-23 by palmitoyl transferases are completely cytosolic. Mutating specific cysteines (Cys; C) to leucine or phenylalanine (L or F; retains hydrophobicity but lacks palmitoylation) partially decreases the membrane association of SNAP-23 which is further hampered by alanine (A; has lesser hydrophobicity, and lacks palmitoylation) mutation at C79, C80 or C83 position. Cloning a transmembrane domain MDR31–145 from multidrug resistance protein into SNAP-23 Cys mutant is able to partially restore its membrane association. Regulated exocytosis studies using co-transfected human growth hormone (hGH) secretion reporter plasmid revealed that overexpression of SNAP-23 Cys and P119A mutants significantly inhibits the overall extent of exocytosis from RBL mast cells, whereas expression of SNAP-23 Cys-MDR31–145 fusion protein is able to restore exocytosis. These results establish that the cysteine-rich domain of SNAP-23 regulates its membrane association and thereby also regulates exocytosis from mast cells.  相似文献   

17.
Phospholipases stimulate secretion in RBL mast cells   总被引:2,自引:0,他引:2  
Cohen JS  Brown HA 《Biochemistry》2001,40(22):6589-6597
Roles for glycerophospholipids in exocytosis have been proposed, but remain controversial. Phospholipases are stimulated following the activation of the high-affinity receptor for immunoglobulin E (IgE) in mast cells. To study the biochemical sequelae that lead to degranulation, broken cell systems were employed. We demonstrate that the addition of three distinct types of exogenous phospholipases (i.e., bcPLC, scPLD, and tfPLA(2)), all of which hydrolyze phosphatidylcholine (PC), trigger degranulation in permeabilized RBL-2H3 cells, a mucosal mast cell line. Production of bioactive lipids by these phospholipases promotes release of granule contents through the plasma membrane and acts downstream of PKC, PIP(2), and Rho subfamily GTPases in regulated secretion. These exogenous phospholipase-induced degranulation pathways circumvent specific factors activated following stimulation of the IgE receptor as well as in ATP- and GTP-dependent intracellular pathways. Taken together, these results suggest that regulated secretion may be achieved in vitro in the absence of cytosolic factors via phospholipase activation and that products of PC hydrolysis can promote exocytosis in mast cells.  相似文献   

18.
To activate the GTPase Rac in rat basophilic leukemia (RBL) cells and mouse bone marrow-derived mast cells (BMMC) a TAT fusion toxin of Bordetella dermonecrotic toxin (DNT-TAT) was constructed. The fusion toxin activated Rac1 and RhoA in vitro but only Rac in RBL cells and BMMC. DNT-TAT caused an increase in inositol phosphate formation, calcium mobilization, ERK activation and degranulation of mast cells. All these effects were inhibited by the Rho GTPase-inactivating Clostridium difficile toxin B and Clostridium sordellii lethal toxin. Also the calcium ionophore A23187 caused mast cell activation, including ERK phosphorylation, by processes involving an activation of Rac. The data indicate pleiotropic functions of Rac in mast cell activation.  相似文献   

19.
Phosphoinositide (PI) 3-kinases are critical regulators of mast cell degranulation. The Class IA PI 3-kinases p85/p110beta and p85/p110delta but not p85/p110alpha are required for antigen-mediated calcium flux in RBL-2H3 cells (Smith, A. J., Surviladze, Z., Gaudet, E. A., Backer, J. M., Mitchell, C. A., and Wilson, B. S. et al., (2001) J. Biol. Chem. 276, 17213-17220). We now examine the role of Class IA PI 3-kinases isoforms in degranulation itself, using a single-cell degranulation assay that measures the binding of fluorescently tagged annexin V to phosphatidylserine in the outer leaflet of the plasma membrane of degranulated mast cells. Consistent with previous data, antibodies against p110delta and p110beta blocked FcepsilonR1-mediated degranulation in response to FcepsilonRI ligation. However, antigen-stimulated degranulation was also inhibited by antibodies against p110alpha, despite the fact that these antibodies have no effect on antigen-induced calcium flux. These data suggest that p110alpha mediates a calcium-independent signal during degranulation. In contrast, only p110beta was required for enhancement of antigen-stimulated degranulation by adenosine, which augments mast cell-mediated airway inflammation in asthma. Finally, we examined carbachol-stimulated degranulation in RBL2H3 cells stably expressing the M1 muscarinic receptor (RBL-2H3-M1 cells). Surprisingly, carbachol-stimulated degranulation was blocked by antibody-mediated inhibition of the Class III PI 3-kinase hVPS34 or by titration of its product with FYVE domains. Antibodies against Class IA PI 3-kinases had no effect. These data demonstrate: (a) a calcium-independent role for p110alpha in antigen-stimulated degranulation; (b) a requirement for p110beta in adenosine receptor signaling; and (c) a requirement for hVPS34 during M1 muscarinic receptor signaling. Elucidation of the intersections between these distinct pathways will lead to new insights into mast cell degranulation.  相似文献   

20.
Calcium-independent phospholipase A2 (iPLA2beta) has recently been suggested to regulate Ca2+ entry by activating store-operated Ca2+ channels. These studies have been conducted in mast cells using thapsigargin to deplete intracellular stores. In RBL 2H3 and bone marrow-derived mast cells (BMMCs), Ca2+ entry is critical for exocytosis and therefore we have examined whether the proposed mechanism would be relevant when a physiological stimulus is applied to these cells. Using an iPLA2beta antibody, we demonstrate that the 84kDa iPLA2beta is expressed in these mast cells. As bromoenol lactone (BEL) is a suicide-based irreversible inhibitor of iPLA2beta it was used to probe this potential mechanism. We observe inhibition of exocytosis stimulated either with antigen or with thapsigargin. However, BEL also inhibits exocytosis when stimulated using a Ca2+ ionophore A23187, which passively transports Ca2+ down a concentration gradient and also in permeabilised mast cells where Ca2+ entry is no longer relevant. Moreover, BEL has only a minor effect on antigen- or thapsigargin-stimulated Ca2+ signalling, both the release from internal stores and sustained elevation due to Ca2+ influx. These results cast doubt on the proposed mechanism involving iPLA2beta required for Ca2+ entry. Although inhibition of exocytosis by BEL could imply a requirement for iPLA2beta activation for exocytosis, an alternative explanation is that BEL inactivates other target proteins required for exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号