首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Phosphorus (P) retention by headwater ditch sediments adsorption plays a pivotal ecological role in P buffering in freshwater ecosystems. Previous studies focused on headwater ditch sediment adsorption and its P retention capacity in acid conditions, but little information is available for headwater ditches under alkaline condition. In this study, adsorption behavior of phosphorus was investigated in headwater ditch sediments under alkaline condition using a batch equilibrium technique, thus determining phosphorus retention capacity of headwater ditch sediments collected at 11 sites at base-flow on 2 March 2006 in purple soils area of China. Results showed that headwater ditch sediments had elevated phosphorus sorption maximum (Smax) values (122.72–293.23 mg P kg?1) and P binding energy (K) values (1.64–8.65 L mg?1), while they had low equilibrium phosphorus concentration (EPC0) (0.001–0.108 mg L?1) and degree of phosphorus saturation (DSP) (1.93–10.19%). Analysis of EPC0 and soluble P concentration indicated that sediments acted as a sink for P across all headwater ditches. Therefore, there were high intrinsic P retention capacities of headwater ditch sediments. Positive correlations of both K and Smax with oxalate-extractable Fe (r of 0.93 and 0.81, p < 0.05) and total carbon (TC) (r of 0.89 and 0.74, p < 0.05) were found, thus suggesting that organic matter and amorphous or poorly crystalline Fe would play dominant roles in P adsorption in the headwater ditch sediments under alkaline condition. Since neither Smax nor K were correlated with CCE (CaCO3) (r of 0.15 and ?0.06, p > 0.05), the high-energy sorptive surfaces of Fe oxides were more important than CaCO3 in P sorption of sediment under alkaline condition. At the same time, these poor correlations between CCE and K and Smax imply a non-linear relationship between P retention and the content of carbonate. The negative correlations of both K and Smax with pH (r of–0.73, and–0.58, p < 0.05) revealed that an increase in pH would not improve sediment retention capacity under alkaline conditions.  相似文献   

2.
The phosphorus (P) fractions and bioavailable P in the sediments from the Quanzhou Bay Estuarine Wetland Nature Reserve were investigated using chemical extraction methods for the first time to study the distribution and bioavailability of P in the reserve sediments. A hypothesis was presented suggesting that the bioavailable P in the sediments could be evaluated using the P fractions. The total phosphorus (TP), inorganic phosphorus (IP), organic phosphorus (OP), non-apatite phosphorus (NAIP), and apatite phosphorus (AP) contents in the sediments were in the ranges of 303.87–761.59 mg kg−1, 201.22–577.66 mg kg−1, 75.83–179.16 mg kg−1, 28.86–277.90 mg kg−1, and 127.36–289.94 mg kg−1, respectively. The water soluble phosphorus (WSP), readily desorbable phosphorus (RDP), algal available phosphorus (AAP), and NaHCO3 extractable phosphorus (Olsen-P) contents in the sediments were in the ranges of 0.58–357.17 mg kg−1, 80.77–586.75 mg kg−1, 1.09–24.12 mg kg−1, and 54.96–676.82 mg kg−1, respectively. The correlation analysis results showed that the NAIP was the major component of the bioavailable P and that the impact of the AP on the bioavailable phosphorus may be minimal. Due to the low TP content in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve, the potential pollution risks of P in the sediments may not be very high. The results also show that the bioavailable P concentrations in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve could not be evaluated by measuring the P fractions and that the hypothesis was untenable.  相似文献   

3.
There is a major need to understand the historical condition and chemical/biological functions of the ecosystems following a conversion of wetlands to agricultural functions. To better understand the dynamics of soil total organic carbon (TOC) and phosphorus (P) during beef cattle pastures to wetland reconversion, soil core samples were collected from the beef cattle pasture and from the natural wetland at Plant City, FL, during five summer seasons (2002–2007). The levels of TOC and soil P were significantly affected by changing land use and hydrology. Draining natural wetlands to grazed pastures resulted in very pronounced reduction of TOC from 180.1 to 5.4 g g?1. Cumulative concentrations of total phosphorus (TP) in soils (1134 mg kg?1) under drained condition are two to three times lower than those in soils (2752 mg kg?1) under flooded condition over the periods of land use reconversion. There was a declining trend (r = 0.82**; p  0.01) in total soil P from natural wetland (763 mg kg?1) to altered pastures (340 mg kg?1), largely as organic-bound P (natural wetland, 48%; grazed pastures, 44%; altered pastures, 29%). These results are important in establishing baseline information on soil properties in pasture and wetland prior to restoring and reconverting pasture back to wetland conditions. The results further suggest that changes in soil properties due to changing land use and hydrologic conditions (drying and re-wetting) could be long lasting.  相似文献   

4.
Rural areas of developing countries require low-cost treatment systems to purify wastewater which is contaminated with pesticides and organic matter. This work evaluated for six months the simultaneous removal of chlorpyrifos and dissolved organic matter in water using four horizontal sub-surface flow constructed wetlands (SSFCW) at a pilot scale, that were planted with Phragmites australis at 20 ± 2 °C water temperature. In each wetland, three concentrations of chlorpyrifos and three of dissolved organic carbon (DOC) were tested by liquid chromatography and an organic carbon analyzer respectively. The pesticide and DOC were added to the wetlands in synthetic wastewater. For the experiments, four wetlands of equal dimensions were used, with granular material of igneous rocks, 3.9–6.4 mm in diameter and at a depth of 0.3 m with a layer of water 0.2 m deep. For each treatment, regular sampling was carried out for the influent and effluents. As a supporting feature NH4+, NO3? and PO43? were quantified and in situ measurements of dissolved oxygen (DO), pH, electrical conductivity, water temperature and redox potential were taken. The overall removal of the chlorpyrifos (92.6%) and DOC (93.2%) was high, as was DOC removal as a function of pesticide concentration in the influent. The minimum magnitude (92.0%) was reached with 425.6 μg L?1 of chlorpyrifos and, with the highest pesticide removal (96.8%). At lower concentrations of the agrochemical, DOC removal increased. The removals were possibly due to mineralization processes, biological decomposition and sorption in plants. These findings demonstrate that SSFCW are capable of simultaneously removing dissolved organic matter and organophosphate pesticides such as chlorpyrifos, which indicate that chlorpyrifos did not interfere with the removal of organic material.  相似文献   

5.
Many factors can influence the improvement of water quality in surface-flow constructed wetlands (SFW). To test if water quality was improved, especially in nutrient and salt content, after passage through SFW, 11 wetland plots of various sizes (50, 200, 800 and 5000 m2) were established within constructed wetlands on agricultural soils in the Ebro River basin (NE Spain) that had been affected by salinization. A set of 15 water quality parameters (e.g., nutrients, salts, sediments, and alkalinity) was obtained from samples collected at the inflow and outflow of the wetlands during the first 4 years after the wetlands were constructed. NO3-N retention rates were as high as 99% in the largest (5000 m2) wetlands. After 4 years, total phosphorus was still being released from the wetlands but not salts. Over the same period, in small wetlands (50, 200, and 800 m2), retention rate relative to the input of NO3-N increased from 40% to almost 60%. Retention of NO3-N amounted to up to 500 g N m?2 per year, for an average load concentration at inflow of ~20 mg l?1. Release of Na+ declined from 16% to 0–2% by volume, for an average load concentration at inflow of ~70 mg l?1. At the current retention rate of NO3-N (76–227 g m?2 per year), 1.5–4% of the catchment should be converted into wetlands to optimize the elimination of NO3-N.  相似文献   

6.
The aim of this paper is to evaluate and compare broadleaved cattail (Typha latifolia L.) biomass production and the nitrogen (N) and phosphorus (P) content in phytomass in three treatment wetland systems and to propose suitable areas for treatment wetlands in Estonia for raw material production. The biomass samples (roots/rhizomes, shoots with leaves and spadixes) and litter were collected from 1 m × 1 m plots—15 plots in the Tänassilma semi-natural wetland, 15 plots in the Põltsamaa free water surface (FWS) constructed wetland (CW), and 10 plots in the Häädemeeste FWS CW. The average aboveground biomass of T. latifolia varied from 0.37 to 1.76 kg DW m?2 in autumn and from 0.33 to 1.38 kg DW m?2 in winter. The greatest average nitrogen (22,950 mg N kg?1) concentration was found in spadixes in 2002, and the phosphorus (6500 mg P kg?1) concentration was measured in roots–rhizomes in 2003. Average standing stock of nitrogen and phosphorus was higher in aboveground than belowground phytomass. In FWS CWs with high hydraulic and nutrient loadings, however, the harvesting of aboveground biomass is not an effective means for the removal of nutrients. Cattail biomass is a valuable insulation material, whereas the fibre from spadixes mixed with clay gives elasticity to clay plasters. According to our estimates, about 5412 km2 could be used for Typha cultivation in Estonia.  相似文献   

7.
An industrial three-cascade-reactor plant treating 45 m3 d?1 of dairy wastewater (DW) was monitored for approx. one year to investigate the effect of variable daily influent loads. It removed more than 85% COD, NH4-N and non-ionic and anionic surfactants from DW within the loads 7–24, 0.4–2.3, 0.4–0.7 and 0.1–0.5 kg d?1, respectively; NH4-N removal, in particular, was almost quantitative. Although the degradation of the above parameters below the lower load thresholds declined to 78.7, 87.5, 50.2 and 64.7%, respectively, their residual concentrations met effluent discharge standards. The biomass settling properties, assessed as sludge volume index (SVI), were satisfactory (generally lower than 150 ml g?1) regardless of the organic load of the influent. The depletion of the pollutant load took mainly place in the first reactor albeit a significant contribution to the removal of the slowly degradable organic matter fraction was given by the two subsequent reactors.  相似文献   

8.
The properties and behaviour of solids retained in a pilot plant constituted of an up-flow anaerobic sludge blanket (UASB) reactor and two constructed wetlands (CWs) were monitored over a 3-year period. The UASB (25.5 m3) was fed with raw municipal wastewater at a flow rate of 61–112 m3 d?1 and a volumetric loading rate (VLR) of 0.75–1.70 kg TCOD m?3 d?1. The CWs (75 m2 each) were operated in series and received a fraction (17–20 m3 d?1) of the UASB effluent. The applied surface loading rates (SLR) were in the range of 3800–8700 g TCOD m?2 d?1 (UASB) and 11–15 g BOD5 m?2 d?1 (CWs). The overall system removed 95% TSS, 85% TCOD and 87% BOD5 on average. For influent VSS, the UASB removed 72.1% and gave a hydrolysis of 63.5%, while the average surplus sludge generation was 8.7%. Over the 3-year period, TSS and VSS accumulated in the CWs at rates of 1.07 and 0.56 kg m?2 year?1, respectively. The aerobic biodegradability of the accumulated solids ranged from 23 to 92 mg O2 g VSS?1 d?1 and increased downstream in the CWs. About 59% of the VSS that entered the CWs was removed by hydrolysis, while 24% accumulated on granular media. These low solids accumulation rates were especially remarkable considering the high COD and BOD5 loading rates applied. The system lay-out appear to be promising in terms of preventing clogging.  相似文献   

9.
Knowledge regarding the fate, accumulation and distribution of arsenic inside constructed wetlands is still insufficient. Based on a complete mass balance analysis, the aim of this study was to investigate the fate and distribution of As in distinct wetland compartments and different segments along the wetland gradient. Experiments were carried out in laboratory-scale wetland systems, two planted with Juncus effusus and one unplanted, using an As-containing artificial wastewater. The obtained results revealed that the planted wetlands have a substantially higher As-mass retention capacity (59–61% of the total As inflow) than wetlands without plantation (only 44%). However, different loads of organic carbon within the inflowing artificial wastewater showed no remarkable influence on As-mass retention in the planted wetlands. Nearly 47–52% of the total inflowing As mass was found to be retained within the first half of the planted wetlands and this retention decreased step by step along the flow path. In contrast, only 28% of the total inflowing As mass was retained within the first half of the unplanted wetland. In general, a different fate and distribution of As was observed inside the planted and unplanted wetlands. Higher As concentrations were exhibited by the plant roots (51.5–161.5 mg As kg?1 dry wt.) compared to the shoots (1.1–6.4 mg As kg?1 dry wt.). Analysis of the total As-mass balance in the planted wetlands revealed that nearly 44–49% of the total inflowing As was recovered or concentrated within the plant roots, only 1% was sequestered within the plant shoots, 7–10% were entrapped or deposited within the gravel bed sediments, 2–3% were retained in the standing pore water, 39–41% were flushed out as outflow and the remaining 1–2% is still considered to be unaccountable. Total As accumulation in the plant shoots made a small contribution to the mass balance, and plant root biomass was found to be the most important compartment for As retention. In contrast, nearly 11% of the total inflowing As were found in the sediment, 2% in the standing pore water, 57% in the outflow and a substantially higher portion (nearly 30%) remained unaccountable in the unplanted bed, which might be released as volatile As compounds or lost from the system due to various unknown reasons. The results indicate that plants have a remarkable effect on As retention and stability of already retained As; hence planted wetlands might be a suitable option for treating As-contaminated wastewater.  相似文献   

10.
Mine tailings are an environmental problem in Southern Spain because wind and water erosion of bare surfaces results in the dispersal of toxic metals over nearby urban or agricultural areas. Revegetation with tolerant native species may reduce this risk. We grew two grasses, Lygeum spartum and Piptatherum miliaceum, and the crop species Cicer arietinum (chickpea) under controlled conditions in pots containing a mine tailings mixed into non-polluted soil to give treatments of 0%, 25%, 50%, 75% and 100% mine tailings. We tested a neutral (pH 7.4) mine tailings which contained high concentrations of Cd, Cu, Pb and Zn. Water-extractable metal concentrations increased in proportion to the amount of tailings added. The biomass of the two grasses decreased in proportion to the rate of neutral mine-tailing addition, while the biomass of C. arietinum only decreased in relation to the control treatment. Neutron radiography revealed that root development of C. arietinum was perturbed in soil amended with the neutral tailings compared to those of the control treatment, despite a lack of toxicity symptoms in the shoots. In all treatments and for all metals, the plants accumulated higher concentrations in the roots than in shoots. The highest concentrations occurred in the roots of P. miliaceum (2500 mg kg?1 Pb, 146 mg kg?1 Cd, 185 mg kg?1 Cu, 2700 mg kg?1 Zn). C. arietinum seeds had normal concentrations of Zn (70–90 mg kg?1) and Cu (6–9 mg kg?1). However, the Cd concentration in this species was ~1 mg kg?1 in the seeds and 14.5 mg kg?1 in shoots. Consumption of these plant species by cattle and wild fauna may present a risk of toxic metals entering the food chain.  相似文献   

11.
Sediment may play an important role during the submerged macrophyte decline in the eutrophication progress. In order to investigate the response in root morphology and nutrient contents of submerged macrophytes Myriophyllum spicatum to sediment, five sediment types were treated and used (five types of sediment were used in the experiment: treatment 1 was nature sediment + sand, a 50:50 (v/v) mixture, treatment 2 was the studied sediment only, treatment 3 was sediment + nitrogen (N, NH4Cl 400 mg kg?1), treatment 4 was sediment + phosphorus (P, NaH2PO4 300 mg kg?1); treatment 5 was sediment + phosphorus (P, NaH2PO4 600 mg kg?1)). The results show that the root N content was only significantly affected by adding N in sediments and P was elevated by adding N and P. The root mass and its percentage increased at first, the peak values were reached at 35 d, and then decreased. The root growth was restrained by adding sand and N in sediments, root senescence process was delayed at the later experimental time by adding P in sediments. The increase of root volume showed a similar trend to that of root growth, except for plant with P addition where root volume remained high after 35 d. The root volume decreased while the main root number increased significantly by adding sand in sediments. The mean root length and main root diameter were reduced by adding P in sediments. The compatible sediment nutrient condition is necessary to restore submerged macrophytes in a degraded shallow lake ecosystem, and the effect of sediment on the root morphology and nutrient content is one of the important aspects restricting the restoration of submerged macrophytes.  相似文献   

12.
The use of surface flow (SFCWs) and subsurface flow constructed wetlands (SFCWs) for the treatment of combined sewer overflows was assessed at pilot scale. Synthetic wastewater was applied in three batches with decreasing concentrations to mimic concentration profiles that are obtained in the field during overflow events. Three simulated combined sewer overflows were applied on each wetland. Composite water samples (60 in total) were taken for a period of 8 days to study the removal of total nitrogen (Ntot), NH4–N, NO3–N, total COD (CODtot) and total phosphorus. Redox potential, which was monitored at various locations along the wetlands, was more negative in the SSFCWs. In general, removal occurred faster in the SSFCWs and the final concentrations were lower. The removal of Ntot was only 36.6 ± 3.3% in the SFCWs due to nitrification-limiting conditions. The conditions in the SSFCWs, in contrast, seemed to promote Ntot removal (removal efficiency 96.7 ± 1.9%). The removal of P was hampered in both wetland types by reducing conditions. P that was initially removed was released again from the substrates later on. First-order removal rate constants were derived for the removal of both CODtot (SSFCWs: 1.1 ± 0.3 m d?1; SFCWs: 0.17 ± 0.06 m d?1) and Ntot (SSFCWs: 0.4 ± 0.1 m d?1; SFCWs: 1.7 ± 0.5 m d?1).  相似文献   

13.
This work illustrates the feasibility of vermitechnology to stabilize sludge from an agro-industry. To achieve the goal, industrial sludge (IS) was mixed with three different bulky agents, i.e. cow dung (CD), biogas plant slurry (BGS) and wheat straw (WS), in different ratios to produce nine different feed mixtures for earthworm Eisenia fetida. Vermicomposting bedding material was analyzed for its different physic-chemical parameters after 15 weeks of experimentations. In all waste mixtures, a decrease in pH, organic C and C:N ratio, but increase in total N, available P, exchangeable K, exchangeable Ca and trace elements (Mg, Fe and Zn) was recorded. IS (40%) + CD (60%) and IS (40%) + BGS (60%) vermibeds showed the highest mineralization rate and earthworm growth patterns during vermicomposting process. Vermicompost contains (dry weight basis) a considerable range of plant available forms of P (17.5–28.9 g kg?1), K (13.8–21.4 g kg?1), Ca (41.1–63.4 g kg?1), Mg (262.4–348.3 mg kg?1), Fe (559.8–513.0 mg kg?1) and Zn (363.1–253.6 mg kg?1). Earthworm growth parameters, i.e. biomass gain, total cocoon production, individual growth rate (mg wt. worm?1 day?1), natality rate, total fecundity were optimum in bedding containing 20–40% industrial sludge. C:N ratio of worm-processed material was within the agronomic acceptable or favorable limit (<15–20). The results clearly suggested that vermitechnology can be a potential technology to convert industrial sludges into vermifertilizer for sustainable land restoration practices.  相似文献   

14.
《Ecological Engineering》2006,26(3):252-265
Four surface-flow mesocosm wetlands were operated at different hydraulic retention times during two periods to treat diluted woodwaste leachate that was acidic, of very high oxygen demand, and toxic. Temperature, dissolved oxygen, and redox potential decreased with increasing water depth. However, there was no significant vertical variation in microbial biomass. No significant development in biomass of planktonic microorganisms was found over 6 weeks of initial operation. It took <1–6 weeks for maturation of the biofilm on submerged plant surfaces and the sedimentary microbial community. Mass reduction efficiencies of chemical oxygen demand, and tannin and lignin increased significantly with hydraulic retention time when 10% leachate was fed with tap water. When a more recalcitrant influent was fed, there was a slight increase of reduction efficiency with increasing hydraulic retention time. Reduction rates increased linearly with mass loading rates up to 0.4 kg m−3 d−1 chemical oxygen demand and 0.13 kg m−3 d−1 tannin and lignin. Precipitation and evapotranspiration had profound impacts on the overall performance and its variability. Mass balance-based operating data of wetlands with a mature microbial community are required for proper performance assessment.  相似文献   

15.
《Ecological Engineering》2006,26(3):206-223
Mass loading and outflow phosphorus (P) relationships were investigated for four stormwater treatment area (STA) wetlands in south Florida. These systems, ranging in size from 350 to 2670 ha, were constructed by the South Florida Water Management District (SFWMD) for Everglades restoration, and approaches currently are being investigated for optimizing their design and management. We analyzed 2–7 years of P removal data from 10 independent STA process trains using system classifications based on dominant vegetation type, which was either emergent aquatic vegetation (EAV) or submerged aquatic vegetation (SAV), and prior land use, which was either recently farmed (RF) or historic wetland (HW). We found that a 1–2 year history of mass loading rates (MLR) at or below ∼1.3 g P/m2/year in STA process trains provided a high likelihood of achieving outflow total P (TP) concentrations less than ∼30 μg/L. Statistical analyses revealed that P removal performance of SAV and EAV-HW systems was generally superior to that of EAV-RF systems. These performance differences were corroborated with data from seven other non-STA Florida-based treatment wetlands. Furthermore, in the subset of SAV and continuously flooded EAV-HW data with P MLRs at or below ∼2 g/m2/year, outflow P concentrations were consistently between 10 and 20 μg/L, mass removal efficiencies were consistently above 85%, and the wetlands demonstrated a substantial resilience to small-to-moderate pulsed inflow P loads. Despite 16 occurrences in these full-scale STA data of annual flow-weighted mean outflow P concentrations between 10 and 20 μg/L, no significant MLR–P relationships were identified for targeting specific P concentrations in this range.  相似文献   

16.
In this paper the factors influencing treatment performance of subsurface flow constructed wetlands (SSF wetlands) treating aquaculture effluents were identified and quantified. The financial impact of advanced aquaculture effluent treatment with SSF wetlands was calculated.It is the first long-term, commercial-scale trial of SSF wetland treatment for effluents from intensive trout farming, a highly diluted effluent at very high flow rates (mean total phosphorous concentration 0.34 mg L?1 at 14.3 L s?1). The 12-month survey provided the opportunity to generate calculation fundamentals for the commercial application of SSF wetlands for aquaculture. Treatment efficiencies of up to 75–86% for total ammonia nitrogen (TAN), biological oxygen demand (BOD5) and total suspended solids (TSS) were achieved. The daily area retention rate per square meter wetland area was between 2.1 and 4.5 g for TAN and between 30 and 98 g for TSS.The performance of the six wetland cells comprising three replicated hydraulic loading groups (14.5, 6.9, 3.3 m3 m?2 day?1) was monitored, offering the possibility to identify factors influencing treatment efficiency through multifactor analysis. These factors turned out to be nutrient inflow concentration, hydraulic loading rate and accumulation of TSS within the wetland bed, the only time-dependent factor. Factors such as vegetation period and fish harvesting were shown to be of significant but negligible importance.Inflow nutrient concentration is determined by production intensity, husbandry conditions, feed quality and any pre-treatment of effluent. Hydraulic load is determined by the space and budget available for SSF construction. TSS accumulation in the wetland is influenced by pre-treatment of the solid fraction prior to the wetland and determines the wetland service lifetime.From these factors the expenses of commercial wetland application can be estimated, leading to a cost increase around €0.20 kg?1 fish produced (less than 10% of production costs) and therefore confirm the commercial feasibility of SSF wetland treatment.  相似文献   

17.
Arsenic hyperaccumulation by Pteris vittata L. (Chinese brake fern) may serve as a defense mechanism against herbivore attack. This study examined the effects of arsenic exposure (0, 5, 15 and 30 mg kg?1) on scale insect (Saissetia neglecta) infestation of P. vittata. Scale insects were counted as a percentage fallen from the plant to the total number of insects after 1 week of As-treatment. The arsenic concentrations in the fronds ranged from 5.40 to 812 mg kg?1. Greater arsenic concentrations resulted in higher percentage of fallen-scale insects (17.2–55.0%). Lower arsenic concentrations (≤5 mg kg?1) showed significantly lower effect on the population compared to 15–30 mg kg?1 (p < 0.05). Arsenic content in the fallen-scale insects was as high as 194 mg kg?1, which indicated that arsenic has been ingested by the scale insects via plant sap. This study is consistent with the hypothesis that arsenic may help P. vittata defend against herbivore's attack.  相似文献   

18.
Recent surveys of periphyton in Lake Tikitapu revealed widespread benthic mats dominated by cyanobacteria. All mats tested positive for the cyanobacterial toxin nodularin-R. The New Zealand native freshwater crayfish or kōura (Paranephrops planifrons) are benthic-dwelling, opportunistic omnivores that are common in Lake Tikitapu. Benthic mats constitute a potential food source for this species. In this study an in-lake feeding experiment with isotopically labeled 13C benthic mats confirmed they were consumed by kōura. Consumption was variable amongst individuals, suggesting the benthic mats are an optional rather than primary food source. Nine kōura were also tested using liquid chromatography–mass spectrometry to determine if nodularin-R bioaccumulated in the hepatopancreas and tail tissue. The hepatopancreas of all kōura were positive for nodularin-R (9.7–225.3 μg kg−1 ww) and nodularin-R was detected in low concentrations in the tail tissue of two individuals (0.5–0.7 μg kg−1 ww). The detection of nodularin-R in kōura is the first in a freshwater organism in a freshwater system, and the first to show the accumulation of nodularin-R from freshwater benthic cyanobacterial mats. Benthic mats may need to be considered as a potential source of cyanotoxins in future freshwater food-web studies.  相似文献   

19.
Denitrifying bioreactors are currently being tested as an option for treating nitrate (NO3?) contamination in groundwater and surface waters. However, a possible side effect of this technology is the production of greenhouse gases (GHG) including nitrous oxide (N2O) and methane (CH4). This study examines NO3? removal and GHG production in a stream-bed denitrifying bioreactor currently operating in Southern Ontario, Canada. The reactor contains organic carbon material (pine woodchips) intended to promote denitrification. Over a 1 year period, monthly averaged removal of influent (stream water) NO3? ranged from 18 to 100% (0.3–2.5 mg N L?1). Concomitantly, reactor dissolved N2O and CH4 production, averaged 6.4 μg N L?1 (2.4 mg N m?2 d?1), and 974 μg C L?1 (297 mg C m?2 d?1) respectively, where production is calculated as the difference between inflow and effluent concentrations. Gas bubbles entrapped in sediments overlying the reactor had a composition ranging from 19 to 64% CH4, 1 to 6% CO2, and 0.5 to 2 ppmv N2O; however, gas bubble emission rates were not quantified in this study. Dissolved N2O production rates from the bioreactor were similar to emission rates reported for some agricultural croplands (e.g. 0.1–15 mg N m?2 d?1) and remained less than the highest rates observed in some N-polluted streams and rivers (e.g. 110 mg N m?2 d?1, Grand R., ON). Dissolved N2O production represented only a small fraction (0.6%) of the observed NO3? removal over the monitoring period. Dissolved CH4 production during summer months (up to 1236 mg C m?2 d?1), was higher than reported for some rivers and reservoirs (e.g. 6–66 mg C m?2 d?1) but remained lower than rates reported for some wastewater treatment facilities (e.g. sewage treatment plants and constructed wetlands, 19,500–38,000 mg C m?2 d?1).  相似文献   

20.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号