首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Flooding periods can be one of the most important factors influencing nitrogen (N) biogeochemical processes in wetlands ecosystem. We conducted a field study using in situ incubation method to investigate the seasonal dynamics of soil net N mineralization in three coastal salt marshes (Suaeda salsa) with different flooding periods (i.e., short-term (STF), seasonal (SF), and tidal (TF) flooding wetland) in the Yellow River Delta. Selected soil inorganic N pools (ammonium, nitrate and inorganic N) and N transformation (mineralization, nitrification and ammonification) rates in the top 0–10 cm soils were repeatedly quantified from April to October. Clear seasonal patterns in inorganic N pools and transformation rates were observed in accord with the seasonal variations of temperature and moisture. Generally, higher levels of soil inorganic nitrogen, ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) occurred in the early-growing season (April), and NH4+-N contents got a small accumulative peak in midsummer (September). The lower rates (negative) of net mineralization (Rmin), nitrification (Rnit) and ammonification (Ramm) were observed in the early-growing season (April–June) and fall (September–October), whereas higher values (positive) in midsummer (August–September). Flooding had a significant influence on inorganic N pools (except for NH4+-N) and transformation rates (p < 0.05). Rmin values in SF wetland were significantly higher in the August-September period than those in other incubation periods. Rnit values in TF wetland exhibited a small variation and the highest value occured in the June–August period. The results of principal component analysis showed that soil samples were clearly divided into two groups before and after flow-sediment regulation. After flooding events, the Rmin and Ramm values generally increased in the three wetlands, whereas a significant decrease in Rnit values was observed in SF wetland (p < 0.05), thus the differences in NO3-N among these wetlands were eliminated. These results suggested that seasonal variations in temperature and moisture are important factors influencing inorganic N pools and transformation rates.  相似文献   

2.
《Aquatic Botany》2005,82(3):181-192
The influence of nitrogen and phosphorus pulses on Chaetomorpha linum (Muller) Kutzing growth and photosynthesis was studied in laboratory experiments. Photosynthesis and growth of C. linum from Tancada lagoon seems limited by both nitrogen and phosphorus, as indicated by the high rate (4.7–11.6 mg O2 g−1 dry weight h−1) of light-saturated photosynthesis (Pm) and growth rates observed under nitrogen plus phosphorus enrichment in relation to enrichment by nitrogen alone (2.9–7.6 mg O2 g−1 dry weight h−1). Significant increase in nitrogen and phosphorus content as percentage of dry weight was observed in C. linum fertilized with a single nutrient or with nitrogen plus phosphorus. In Tancada lagoon, when availability of nitrogen to primary producers is by pulses, an increase of nitrate concentration in the water column (from 6 to 100 μM) has a greater effect on growth of C. linum (growth rate: 0.13 day−1) than an increase in ammonium concentration (from 20 to 100 μM and growth rate: 0.11 day−1). For a given thallus nitrogen content (0.6–1.4% N), both Pm and the photosynthetic efficiency (α) normalized to dry weight were correlated (r2 = 0.73, p < 0.005) indicating that variations in electron transport were coupled to variations in C-fixation capacity. Optimizing both α and Pm may be a general characteristic of thin-structured opportunistic algae in more variable estuarine environments.  相似文献   

3.
The present study demonstrates the influence of the duration of periodical waterlogging with artificial seawater on the photosynthetic and physiological responses of Kandelia candel L. Druce seedlings, the pre-dominant species of subtropical mangroves in China. Artificial tidal fluctuations applied here closely mimicked the twice daily tidal inundation which mangroves experience in the field. All the seedlings were immersed in artificial seawater during 70-day cultivation. Similar trends with increasing duration of immersion occurred in photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration, where significant decreases occurred only in long time treatments of 10 or 12 h. Water used efficiency and chlorophyll contents showed lower in medium periods and higher in long periods of immersion. This indicates that the increase in pigment contents of leaves was ineffective in promoting Pn under long time immersion. Light saturation points under short time waterlogging (0–4 h) occurred at light intensities of 800–1000 μmol/m2/s, and at around 400 μmol/m2/s in long time treatments (8–12 h). Long periods of tidal immersion therefore significantly inhibited photosynthesis of mature leaves. Alcohol dehydrogenase and oxidase activity in roots both increased under longer immersion periods, suggesting that roots are sensitive to anaerobiosis under long term waterlogging. The activities of peroxidase and superoxide dismutase in mature leaves increased in 8 h and 10 h treatments, respectively. The content of malondialdehyde in mature leaves increased under long time treatments. Abscisic acid accumulation in mature leaves also had a sharp increase from 8 h to 12 h inundation. Even though the anti-oxidative enzymes were induced by waterlogging, this was not sufficient to protect the seedlings from senescence. The results suggested that K. candel seedlings completely tolerated tidal immersion by seawater up to about 8 h in each cycle, which matches the natural distribution of K. candel in inter-tidal zones of China.  相似文献   

4.
The nitrogen (N) uptake kinetic parameters for Microcystis field assemblages collected from the San Francisco Bay Delta (Delta) in 2012 and non-toxic and toxic laboratory culture strains of M. aeruginosa were assessed. The 15N tracer technique was used to investigate uptake of ammonium (NH4+), nitrate (NO3), urea and glutamic acid over short-term incubations (0.5–1 h), and to study inhibition of NO3, NH4+ and urea uptake by NH4+, NO3 and NH4+, respectively. This study demonstrates that Delta Microcystis can utilize different forms of inorganic and organic N, with the greatest capacity for NH4+ uptake and the least for glutamic acid uptake, although N uptake did not always follow the classic Michaelis–Menten hyperbolic relationship at substrate concentrations up to 67 μmol N L−1. Current ambient N concentrations in the Delta may be at sub-saturating levels for N uptake, indicating that if N loading (especially NH4+) were to increase, Delta Microcystis assemblages have the potential for increased N uptake rates. Delta Microcystis had the highest specific affinity, α, for NH4+ and the lowest for NO3. In culture, N uptake by non-toxic and toxic M. aeruginosa strains was much higher than from the field, but followed similar N utilization trends to those in the field. Neither strain showed severe inhibition of NO3 uptake by NH4+ or inhibition of NH4+ uptake on NO3, but both strains showed some inhibition of urea uptake by NH4+.  相似文献   

5.
Constructed wetlands are becoming increasingly popular worldwide for removing contaminants from domestic wastewater. This study investigated the removal efficiency of nitrogen (N) and phosphorus (P) from wastewater with the simulated vertical-flow constructed wetlands (VFCWs) under three different substrates (i.e., BFAS or blast furnace artificial slag, CBAS or coal burn artificial slag, and MSAS or midsized sand artificial slag), hydraulic loading rates (i.e., 7, 14, and 21 cm d?1), and wetland operational periods (0.5, 1, and 2 years) as well as with and without planting Canna indica L. The wastewater was collected from the campus of South China Agricultural University, Guangzhou, China. Results show that the percent removal of total P (TP) and ammonium N (NH4+-N) by the substrates was BFAS > CBAS > MSAS due to the high contents of Ca and Al in substrate BFAS. In contrast, the percent removal of total N (TN) by the substrates was CBAS > MSAS > BFAS due to the complicated nitrification/denitrification processes. The percent removal of nutrients by all of the substrates was TP > NH4+-N > TN. About 10% more TN was removed from the wastewater after planting Canna indica L. A lower hydraulic loading rate or longer hydraulic retention time (HRT) resulted in a higher removal of TP, NH4+-N, and TN because of more contacts and interactions among nutrients, substrates, and roots under the longer HRT. Removal of NO3?N from the simulated VFCWs is a complex process. A high concentration of NO3?N in the effluent was observed under the high hydraulic loading rate because more NH4+-N and oxygen were available for nitrification and a shorter HRT was unfavorable for denitrification. In general, a longer operational period had a highest removal rate for nutrients in the VFCWs.  相似文献   

6.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

7.
Coastal mangroves have the potential to improve the water quality of urban and rural runoff before it is discharged into adjacent coastal bays and oceans; but they also can be impaired by excessive pollutants from upstream. Nutrients (phosphorus and nitrogen), salinity, and other water quality parameters were measured in five mangrove tidal creeks in different hydrogeomorphic and urbanization settings during high and low tides over a calendar year of wet (June and August 2015) and dry (February and April 2016) seasons in the Greater Naples Bay area in Southwest Florida, USA. Nutrient concentrations (ave. ± std error) in the tidal creeks were 0.055 ± 0.008 mg-P/L for total phosphorus (TP) and 0.610 ± 0.020 mg-N/L for total nitrogen (TN), with an average N:P ratio of 11.4:1. Average wet season TP (0.075 ± 0.010 mg-P/L) was significantly higher than the dry season TP (0.033 ± 0.003 mg-P/L; p < 0.01, f = 15.17, fcrit = 3.89) and the average wet season TN (0.75 ± 0.03 mg-N/L) was significantly higher than dry season TN (0.52 ± 0.02 mg/L; p < 0.01, f = 64.14, fcrit = 3.89), suggesting that urban stormwater runoff is directly or indirectly affecting the nutrient conditions in these mangroves. Significant differences in nutrient concentrations between low tide and high tide were not found for either TP (p = 0.43, f = .63, fcrit = 3.88) or TN (p = 0.20, f = 1.66, fcrit = 3.89). These differences were confirmed by a PCA and cluster analyses, which found differences to be seasonal. We could not conclude from these results whether these five mangrove wetlands were sources nor sinks of nutrients based simply on the measurement of nutrient concentrations. But we illustrated that nutrient concentrations were indicators of the mangroves’ hydrogeomorphic settings, their tidal fluxes from Naples Bay, and the Bay's upstream watersheds, and less by direct urban runoff.  相似文献   

8.
Many plants develop toxicity symptoms and have reduced growth rates when supplied with ammonium (NH4+) as the only source of inorganic nitrogen. In the present study, the growth, morphology, NH4+ uptake kinetics and mineral concentrations in the tissues of the free-floating aquatic plant Salvinia natans (water fern) supplied exclusively with NH4+–N at concentrations of 0.25–15 mM were investigated. S. natans grew well, with relative growth rates of c. 0.25 g g?1 d?1 at external NH4+ concentrations up to 5 mM, but at higher levels growth was suppressed and the plants had small leaves and short roots with stunted growth. The high-affinity transport system (HATS) that mediate NH4+ uptake at dilute NH4+ levels was downregulated at high NH4+ concentrations with lower velocities of maximum uptake (Vmax) and higher half-saturation constants (K1/2). High NH4+ levels also barely affected the concentrations of mineral cations and anions in the plant tissue. It is concluded that S. natans can be characterized as NH4+-tolerant in line with a number of other species of wetland plants as growth was unaffected at NH4+ concentrations as high as 5 mM and as symptoms of toxicity at higher concentrations were relatively mild. Depolarization of the plasma membrane to the equilibrium potential for NH4+ at high external concentrations may be a mechanism used by the plant to avoid excessive futile transmembrane cycling. S. natans is tolerant to the high NH4+ levels that prevail in domestic and agricultural wastewaters, and the inherent high growth rate and the ease of biomass harvesting make S. natans a primary candidate for use in constructed wetland systems for the treatment of various types of nitrogen-rich wastewaters.  相似文献   

9.
A natural wetland of about 12 000 m2 along the east coast of Lake Taihu was separated into five subzones with different macrophyte structures to investigate their nutrient removal dynamics. Wastewater was continuously pumped into the wetland from July 2008 to June 2009 at an average rate of 22 m3/h. Neighboring natural wetland with high density of macrophyte was chosen as a comparison site. The removal of TN, TDN, TP, and TDP in the experimental wetlands as a whole was about 79.3, 54.5, 4.5, and 3.4 kg, respectively. The decrease of nitrogen concentration was more pronounced in winter (January–March) 2009, representing a respective reduction of 46.4%, 48.0%, and 47.9% in TN, TDN, and NH4–N concentration. Results reveal a higher nutrient removal potential in wetland dominated by Typha orientalis Presl, Zizania latifolia Turcz, and Hemarthria sibirica under high nutrient load. However, areas dominated by Zizania latifolia Turcz, Nelumbo nucifera Gaertn, and Ceratophyllum demersum L. had better purification performance when the above-water-surface macrophytes were harvested frequently. Dissolved oxygen, pH, and oxidation–reduction potential decreased with the increase of the percentage of Zizania latifolia Turcz-dominated macrophytes. High nutrient concentration in the comparison site and net increase of NH4–N in Z1 indicate the possibility of water re-pollution by intense macrophyte decomposition. Furthermore, results suggest that harvesting macrophytes has potential ability in nitrogen, especially ammonium nitrogen removal, and hence could be considered in wetland construction for lake restoration.  相似文献   

10.
Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+–N concentration of 1 mg L?1 in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus L. The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+–N concentration of 1 mg L?1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L?1 NH4+–N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity, active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ stress and shading, NH4+ is scavenged by FAA synthesis.  相似文献   

11.
《Harmful algae》2011,10(6):531-539
Temporal and spatial variability in the kinetic parameters of uptake of nitrate (NO3), ammonium (NH4+), urea, and glycine was measured during dinoflagellate blooms in Changjiang River estuary and East China Sea coast, 2005. Karenia mikimotoi was the dominant species in the early stage of the blooms and was succeeded by Prorocentrum donghaiense. The uptake of nitrogen (N) was determined using 15N tracer techniques. The results of comparison kinetic parameters with ambient nutrients confirmed that different N forms were preferentially taken up during different stages of the bloom. NO3 (Vmax 0.044 h−1; Ks 60.8 μM-N) was an important N source before it was depleted. NH4+ (Vmax 0.049 h−1; Ks 2.15 μM-N) was generally the preferred N. Between the 2 organic N sources, urea was more preferred when K. mikimotoi dominated the bloom (Vmax 0.020 h−1; Ks 1.35 μM-N) and glycine, considered as a dominant amino acid, was more preferred when P. donghaiense dominated the bloom (Vmax 0.025 h−1; Ks 1.76 μM-N). The change of N uptake preference by the bloom-forming algae was also related to the variation in ambient N concentrations.  相似文献   

12.
Lack of nitrogenous substrate and buffering capacity have been identified as causing failure in previous work on the treatment of fruit cordial wastewater using anaerobic continuous stirred tank reactors. In this study, ammonium bicarbonate was proposed to be used as the substrate for nitrogenous and buffering resources. In order to determine the toxicity effect of the ammonium salts on the anaerobic system, a series of concentration from 0 to 40 mg L?1 was tested. Biogas production was used as the indicator for NH4+ toxicity. The results showed no indication that methanogen was affected by the additional ammonium salt within the dosing regime. Application of the specific mathematical function (G = Gmk/t) to describe the kinetic of biogas production, suggested that the optimal concentration of ammonium bicarbonate that can be used is 10 mg L?1. This study also shows that the dosage regime up to 40 mg L?1 can be used to supplement the lack of nitrogenous and buffering capacity for the anaerobic digestion process of the fruit cordial wastewater using CSTR.  相似文献   

13.
An experiment conducted in an unheated glasshouse from October 2006 to March 2008 studied the efficiency of different macrophytes in reducing NO3-N and NH4-N concentrations and loads in synthetic wastewaters. The experimental setup consisted of plastic tanks, filled with gravel and vegetated with Carex elata All., Juncus effusus L., Phragmites australis (Cav.) Trin., Typhoides arundinacea L. Moench (syn Phalaris arundinacea L.) var. picta and Typha latifolia L. There was also a control without vegetation. From January to July, a solution of 50–60 ppm of NH4-N and NO3-N was applied monthly; then the input concentration was doubled. The total load at the end of the experimental period was 70.4 g/m2 of NO3-N and 67.3 of NH4-N. At the end of each month, water was discharged from the tanks and analysed to determine the two nitrogen forms. At the end of the experiment, 33 g/m2 of total N (almost 24% of applied N) had disappeared in the control. Among species, the highest abatement was detected in T. latifolia (72 g/m2, almost 52% of applied N) and the lowest in J. effusus (35%).A weekly chemical analysis in July showed that a large amount of NH4-N quickly disappeared in all treatments, while NO3-N only decreased in the vegetated tanks. In December, NH4-N had similar dynamics, while NO3-N increased.All water volumes entering and exiting the tanks were measured in order to evaluate evapotranspiration. T. latifolia showed the highest water consumption, reaching a cumulative value of above 1000 mm.At the end of the experiment, J. effusus presented the highest amount of nitrogen stored in the aerial parts (5.63 g/m2) and T. latifolia the lowest (1.92 g/m2).  相似文献   

14.
《Harmful algae》2008,7(6):781-789
A monitoring program with a weekly sampling frequency over a 15-month period indicates that urea concentrations above a certain threshold level may trigger the blooms of Alexandrium catenella in Thau lagoon. However, urea concentrations were also sometimes related to ammonium and dissolved organic nitrogen concentrations, indicating that the role of urea may not be a direct one. An original approach is used to assess the relative contribution of several nitrogen sources (nitrate, nitrite, ammonium, urea) to growth of A. catenella by comparing nitrogen uptake rates to nitrogen-based growth rates estimated from dilution experiments during four blooms over a 4-year period (2001–2004) in Thau lagoon. Nitrate and nitrite contributed 0.1–14% and 0.1–5% respectively of growth requirements. Ammonium and urea were the main N sources fueling growth of A. catenella (30–100% and 2–59%, respectively). Indirect estimates indicated that an unidentified N source could also contribute significantly to growth at specific times. Concerning ammonium and urea uptake kinetics, half-saturation constants varied between 0.2 and 20 μgat N L−1 for ammonium and between 0.1 and 44 μgat N L−1 over the 4-year period, indicating that A. catenella can have a competitive advantage over other members of the phytoplankton even under low concentrations of ammonium and urea. However, the observed large changes in ammonium and urea uptake kinetics on a short time scale (days) during blooms preclude more precise estimates of those contributions to growth and require further investigation.  相似文献   

15.
Wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China were examined by using a combination of the satellite imageries and field experiments. Results showed that the conversions mainly occurred between dry lands and Phragmites australis–Suaeda salsaTamarix chinensis marshes (PSTMs). The total area of marsh wetland was reduced by 65.09 km2 during the period from 1986 to 2005, and these conversions might be attributed to a combination of farming, oil exploration and water extraction, as well as soil salinization. Significant differences were observed in bulk density, pH, salinity and NO3-N between different land-use types (P < 0.05). After the conversions from marsh wetlands to dry lands, bulk density, pH, salinity and NH4+-N decreased slightly, while a significant increase in NO3-N, TN (total nitrogen), and AP (available phosphorus) (P < 0.05) was observed. The more loss of soil nutrient storage also occurred after the maximal area conversion from PSTMs to dry lands compared to other conversions during the study period. The storages of soil organic matter, NH4+-N and total phosphorus decreased greatly under the conversion from three types of marshes to dry lands, while those of NO3-N, AP and TN showed an obvious increase during the whole study period.  相似文献   

16.
Microalgae have received much attention for the inorganic nutrient removal in tertiary treatment of domestic wastewater. Effect of different kinds of nitrogen sources on the growth and nitrogen/phosphorus removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, from a low-nutrient environment condition was studied and reported in this paper. The order of specific growth rate of the microalga with different nitrogen sources was NH4-N > urea-N > NO3-N. With nitrate or urea as nitrogen source, the microalga could grow well and remove both nitrogen and phosphorus efficiently (90% nitrogen and nearly 100% phosphorus were removed). However, with ammonium as the nitrogen source, the maximum algal density was relatively low, and the nitrogen and phosphorus removal efficiencies were as low as 31.1% and 76.4%, respectively. This was caused by the inhibitory effect of algal culture's acid pH due to H+ releasing from NH4+ during algal cultivation process.  相似文献   

17.
《Process Biochemistry》2007,42(4):715-720
A comparative study to produce the correct influent for Anammox process from anaerobic sludge reject water (700–800 mg NH4+-N L−1) was considered here. The influent for the Anammox process must be composed of NH4+-N and NO2-N in a ratio 1:1 and therefore only a partial nitrification of ammonium to nitrite is required. The modifications of parameters (temperature, ammonium concentration, pH and solid retention time) allows to achieve this partial nitrification with a final effluent only composed by NH4+-N and NO2-N at the right stoichiometric ratio. The equal ratio of HCO3/NH4+ in reject water results in a natural pH decrease when approximately 50% of NH4+ is oxidised. A Sequencing batch reactor (SBR) and a chemostat type of reactor (single-reactor high activity ammonia removal over nitrite (SHARON) process) were studied to obtain the required Anammox influent. At steady state conditions, both systems had a specific conversion rate around 40 mg NH4+-N g−1 volatile suspended solids (VSS) h−1, but in terms of absolute nitrogen removal the SBR conversion was 1.1 kg N day−1 m−3, whereas in the SHARON chemostat was 0.35 kg N day−1 m−3 due to the different hydraulic retention time (HRT) used. Both systems are compared from operational (including starvation experiments) and kinetic point of view and their advantages/disadvantages are discussed.  相似文献   

18.
This study is the first to report on the relationships between immature mosquitoes (larvae and pupae) and landscape and environmental habitat characteristics in wetlands associated with row crop agriculture. Indicator species analysis (ISA) was used to test for associations among mosquito species and groups of wetland sites with similar Landscape Development Intensity (LDI) values. Results indicated that Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae were associated with agricultural wetlands (LDI > 2.0), whereas Anopheles crucians and Culex territans were associated with forested reference wetlands (LDI < 2.0) in both wet and dry years. The species fidelity to wetland type, regardless of the hydrologic regime, demonstrates these species are robust indicators of wetland condition. Data on immature mosquito assemblages were compared to selected landscape and environmental habitat variables using Akaike's Information Criterion (AICc) model selection. LDI indices, dissolved oxygen concentration, the proportion of emergent vegetation, and the proportion of bare ground in wetlands were important factors associated with the selected mosquito species. These results indicate that LDI indices are useful in predicting the distributions of disease vectors or other nuisance mosquito species across broad geographic areas. Additionally, these results suggest mosquitoes are valuable bioindicators of wetland condition that reflect land use and hydrologic variability.  相似文献   

19.
The effect of two nutrient solution temperatures (cold (10 °C) and warm (22 °C)) during two flowering events of rose plants (Rosa × hybrida cv. Grand Gala) were examined by measuring chlorophyll (Chl) a fluorescence, ammonium (NH4+) content and nitrate reductase (NR) activity in four different leaf types, that is, external and internal leaves of bent shoots and lower and upper leaves of flowering stems. Besides, nitrate (NO3?) uptake and water absorption, total nitrogen (N) concentration in the plant, dry biomass, and the ratios of shoot/root and thin-white roots/suberized-brown roots were determined. Generally, cold solution increased NO3? uptake and thin-white roots production but decreased water uptake, so plants grown at cold solution had to improve their NO3? uptake mechanisms to obtain a higher amount of nutrient with less water absorption than plants grown at warm solution. The higher NO3? uptake can be related to an increase in NR activity, NH4+ content and total N concentration at cold solution. Nutrient solution temperature also had an effect on the photosynthetic apparatus. In general terms, the effective quantum yield (?PSII) and the fraction of open PSII reaction centres (qL) were higher in rose plants grown at cold solution. These effects can be associated to a higher NO3? uptake and total N concentration in the plants and were modulated by irradiance throughout all the experiment. Plants could adapt to cold solution by enhancing their metabolism without a decrease in total dry biomass. Nevertheless, the effect of nutrient solution temperature is not simple and also affected by climatic factors.  相似文献   

20.
Nitrogen transformations were studied in flooded and non-flooded vertical flow columns with and without a rice plant. Influent (average concentration: NH4+-N: 40 mg L?1; NO3?-N: 0.15 mg L?1; and NO2?-N: 4.0 mg L?1) was supplied at 1.25 cm d?1 during stage 1 (20 May–5 August) and at 2.50 cm d?1 at stage 2 (6 August–26 October), which resulted in an average nitrogen loading of 156 g m?2 during the entire experimental period. Total nitrogen (T-N) removal efficiencies exceeded 90% in vertical flow systems with rice plants. Nitrogen assimilated by the rice plants in the flooded column accounted for 60% of the total input nitrogen, while that in the non-flooded column accounted for 36% of the total input. The remaining nitrogen appeared to be removed through biogeochemical pathways. Although some nitrogen flowed out, most input nitrogen was also removed even in the flooded and non-flooded unplanted columns.A high-resolution vertical distribution investigation showed the changes of nitrogen forms in soil water. In the flooded condition, there were high ammonium and high nitrite concentrations in the upper layers. The concentrations of ammonium and nitrite simultaneously decreased with depth increasing, suggesting that anaerobic ammonia oxidation (anammox) may occur in these anaerobic conditions. In contrast, the distributions of nitrogen in the non-flooded columns with elevated water level suggested that nitrification–denitrification route was the major removal mechanism, whether or not rice plants were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号