首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ocular circadian rhythm in the eye of Bulla gouldiana is generated by a rhythm in membrane potential of retinal neurons that is driven by alterations in potassium conductance. Since potassium conductance may be modulated by the phosphorylation of potassium channels, the circadian rhythm may reflect rhythmic changes in protein kinase activity. Furthermore, the circadian rhythm recorded from the Bulla eye can be phase shifted by agents that affect protein synthesis and protein phosphorylation on tyrosine residues. Interestingly, the eukaryotic cell division residues. Interestingly, the eukaryotic cell division cycle is generated by similar processes. Rhythmic cell division is regulated by periodic synthesis and degradation of a protein, cyclin, and periodic tyrosine phosphorylation of a cyclin-dependent kinase (cdk), p34cdc2. The interaction between these two proteins results in rhythmic kinase activity of p34cdc2. Both cyclin and p34cdc2 are pat of two diverse gene families, some of whose members have been localized to postmitotic cell types with no function yet determined. In the current work, we identify proteins similar to the cdks and cyclin in the eye of Bulla. Neither of these ocular proteins are found in mitotic cells in Bulla, and the cdk-like protein (p40) is specific to the eye. Furthermore, the concentration of the cyclin-like protein (p66) is affected by treatments that phase shift the circadain rhythm. The identification of cdk and cyclin-like proteins in the Bulla eye is consistent with the hypothesis that the biochemical mechanism responsible for generating the ocular circadian rhythm in Bulla is related to the biochemical mechnism that regulates the eukaryotic cell division cycle. 1994 John Wiley & Sons, Inc.  相似文献   

2.
We report for the first time that the endogenous, pseudo‐steady‐state, specific intracellular levels of the hydroxyl radical (si‐OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si‐OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:673–680, 2014  相似文献   

3.
Abstract

In Tetrahymena thermophila, the ultradian rhythm of tyrosine aminotransferase activity was investigated under free‐running conditions. The rhythm persisted in the presence of 1 mM emetine, although the drug efficiently inhibited both protein synthesis and cell division. Also 250 mM hydroxyurea, which suppressed cell growth to a high degree, did not prevent the rhythm. These data support the concept of an ultradian oscillator working independently of translation and being not a consequence of the “cell cycle”;, although under normal physiological conditions the rhythm of tyrosine aminotransferase is accompanied by and equiperiodic with the rhythm of cell division, both in the ultradian and circadian growth modes.  相似文献   

4.
The cell‐cycle progression of Enteromorpha compressa (L.) Nees (=Ulva compressa L.) was diurnally regulated by gating the G1/S transition. When the gate was open, the cells were able to divide if they had attained a sufficient size. However, the cells were not able to divide while the gate was closed, even if the cells had attained sufficient size. The diurnal rhythm of cell division immediately disappeared when the thalli were transferred to continuous light or darkness. When the thalli were transferred to a shifted photoperiod, the rhythm of cell division immediately and accurately synchronized with the shifted photoperiod. These data support a gating‐system model regulated by light:dark (L:D) cycles rather than an endogenous circadian clock. A dark phase of 6 h or longer was essential for gate closing, and a light phase of 14 h was required to renew cell division after a dark phase of >6 h.  相似文献   

5.
Restricted feeding during the resting period causes pronounced shifts in a number of peripheral clocks, but not the central clock in the suprachiasmatic nucleus (SCN). By contrast, daily caloric restriction impacts also the light-entrained SCN clock, as indicated by shifted oscillations of clock (PER1) and clock-controlled (vasopressin) proteins. To determine if these SCN changes are due to the metabolic or timing cues of the restricted feeding, mice were challenged with an ultradian 6-meals schedule (1 food access every 4 h) to abolish the daily periodicity of feeding. Mice fed with ultradian feeding that lost <10% body mass (i.e. isocaloric) displayed 1.5-h phase-advance of body temperature rhythm, but remained mostly nocturnal, together with up-regulated vasopressin and down-regulated PER1 and PER2 levels in the SCN. Hepatic expression of clock genes (Per2, Rev-erbα, and Clock) and Fgf21 was, respectively, phase-advanced and up-regulated by ultradian feeding. Mice fed with ultradian feeding that lost >10% body mass (i.e. hypocaloric) became more diurnal, hypothermic in late night, and displayed larger (3.5 h) advance of body temperature rhythm, more reduced PER1 expression in the SCN, and further modified gene expression in the liver (e.g. larger phase-advance of Per2 and up-regulated levels of Pgc-1α). While glucose rhythmicity was lost under ultradian feeding, the phase of daily rhythms in liver glycogen and plasma corticosterone (albeit increased in amplitude) remained unchanged. In conclusion, the additional impact of hypocaloric conditions on the SCN are mainly due to the metabolic and not the timing effects of restricted daytime feeding.  相似文献   

6.
The aim of this study was to evaluate the daily rhythm of locomotor activity in Rhamdia quelen (R. quelen). A total of 30 fish were enrolled in the study and were equally divided in 10 groups and maintained in 100 liters tanks. The locomotor activity was measured in fish maintained under the LD 12:12 photoperiod regime; thereafter, the LD cycle was reversed to DL in order to study the resynchronization and to explore the endogenous pacemaker. Subsequently, the fish were subjected to constant conditions of light to test whether or not locomotor rhythms are regulated by the endogenous circadian clock. The effect of increasing light length and intensity was studied on daily rhythm of locomotor activity of fish. Our results showed that the R. quelen is a strictly diurnal species, the rhythm of locomotory activity resynchronized quickly after inverting the LD cycle and persist under free course LL, suggesting a circadian origin. The light showed a significant masking effect often blocking the expression of the biological rhythm. The strictly diurnal behavior is controlled directly by the photoperiod and maintained even under very dim light (30 lux).  相似文献   

7.
To investigate whether depression is accompanied by changes in diurnal rhythms of free estradiol and cortisol in different phases of the menstrual cycle, we measured these two hormone levels in saliva samples collected every 2 h for 24 h from 15 healthy normally cycling women and 12 age-matched normally cycling women suffering from major depression taking antidepressants. The assessments were repeated four times over one menstrual cycle: during menstruation and in the late follicular/peri-ovulating, early to mid-luteal and late luteal phases, respectively. Quantification with a nonlinear periodic regression model revealed distinct diurnal rhythms in free estradiol and free cortisol in all subjects. For the diurnal cortisol rhythm, significant differences were found in the peak-width and ultradian amplitude among different menstrual phases, both in controls and depressed patients, while no significant differences were found between the two groups. The diurnal estradiol rhythm, on the other hand, was quite consistent among different menstrual phases within both groups, while the depressed patients had overall larger amplitudes than controls, which is negatively correlated with disease duration. Significant positive correlations between the two hormone rhythms were found for 24-h mean level (mesor), peak, and trough in late luteal phase, and for ultradian harmonics in early to mid-luteal phase in controls, but only for ultradian harmonics in late follicular/peri-ovulating phase and for acrophase in the menstruation phase in depressed patients. A sub-analysis was also performed in patients who received Fluoxetine (n = 7). The findings implicate a close correlation between the hypothalamic-pituitary-adrenal axis and the hypothalamic-pituitary-gonadal axis, both of which may be involved in depression.  相似文献   

8.
为了研究皮质醇分泌的昼夜节律在月经周期中的变化,实验对15位月经周期正常的育龄期健康妇女,在月经周期的不同阶段分别于24h内每隔两小时采样,检测唾液昼夜游离皮质醇水平。采用非线性回归分析模型分析皮质醇昼夜节律。结果显示,皮质醇昼夜节律在整个月经周期都具有复杂的明显受到亚节律(ultradian)影响的分泌形式;与月经期相比,围排卵期和黄体晚期昼夜节律波峰宽度(peak-width)明显减低(P=0.005与0.031),而昼夜节律波谷(trough)有抬高趋势(P=0.0622与0.066);黄体晚期的亚节律波幅(ultradian amplitude)与月经期相比显著减低(P=0.002)而与围排卵期相比有减低趋势(P=0.05)。这些结果提示月经周期的不同阶段对皮质醇分泌的昼夜节律有影响。  相似文献   

9.
The cell division cycle in several pelagic dinoflagellate species has been shown to be phased with the diurnal cycle, suggesting that their cell cycle may be regulated by a circadian clock. In this study, we examined the cell cycle of an epibenthic dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo (Dinophyceae), and found that cell division was similarly phased to the diurnal cycle. Cell division occurred during a 3-h window beginning 6 h after the onset of the dark phase. Cell cycle progression in higher eukaryotes is regulated by a cell cycle regulatory protein complex consisting of cyclin and the cyclin-dependent kinase CDC2. In this report, we identified a CDC2-like kinase in G. toxicus that displays activity in vitro against a known substrate of CDC2 kinase, histone H1. As in higher eukaryotes, CDC2 kinase was expressed constitutively in G. toxicus throughout the cell cycle, but it was activated only late in the dark phase, concurrent with the presence of mitotic cells. These results indicate that cell division in G. toxicus is regulated by molecular controls similar to those found in higher eukaryotes.  相似文献   

10.
Periodogram techniques on detrended data were used to determine the incidence of Trypanosoma brucei brucei infection on the distribution of the core temperature of rats and the expression of temperature rhythms. In such an animal model, sudden episodic hypothermic bouts were described. These episodes of hypothermia are used here as temporal marks for the purpose of performing punctual comparisons on temperature organization. The experiment was conducted on 10 infected and 3 control Sprague‐Dawley rats reared under a 24 h light‐dark cycle. Core temperature was recorded continuously throughout the experiment, until the animals' death. Temperature distributions, analyzed longitudinally across the full duration of the experiment, exhibited a progressive shift from a bimodal to unimodal pattern, suggesting a weakening of the day/night core temperature differences. After hypothermic events, the robustness of the circadian rhythm substantially weakened, also affecting the ultradian components. The ultradian periods were reduced, suggesting fragmentation of temperature generation. Moreover, differences between daytime and nighttime ultradian patterns decreased during illness, confirming the weakening of the circadian component. The results of the experiments show that both core temperature distribution and temperature rhythm were disrupted during the infection. These disruptions worsened after each episode of hypothermia, suggesting an alteration of the temperature regulatory system.  相似文献   

11.
12.
Development involves interactions between genetic and environmental influences. Vertebrate mothers are generally the first individuals to encounter and interact with young animals. Thus, their role is primordial during ontogeny. The present study evaluated non‐genomic effects of mothers on the development of rhythms of precocial Japanese quail (Coturnix c. japonica). First, we investigated the influence of mothering on the ontogeny of endogenous rhythms of young. We compared circadian and ultradian rhythms of feeding activity of quail reared with or without adoptive mothers. More brooded than non‐brooded quail presented a circadian and/or an ultradian rhythm. Thus, the presence of the mother during the normal brooding period favors, in the long term, expression of rhythms in the young. Second, we investigated the influence of rhythmic phenotype of the mother on the development of endogenous rhythms of young by comparing quail brooded by circadian‐rhythmic adoptive mothers (R) to quail brooded by circadian‐arrhythmic adoptive mothers (A). More R‐brooded than A‐brooded quail expressed circadian rhythmicity, and circadian rhythm clarities were greater in R‐brooded than A‐brooded quail. Ultradian rhythmicity did not differ between R‐ and A‐brooded quail, nor between R and A adoptive mothers. Thus, the rhythmic phenotypes of quail mothers influence the rhythmic phenotypes of their young. Our results demonstrate that mothers of precocial birds influence epigenetically the ontogeny of endogenous rhythms of the young they raise.  相似文献   

13.
As soon as they hatch, gallinaceous chicks follow broody hens. This matriarchal unit presents a temporal organization of activity. The ontogeny of this ultradian rhythm of activity was followed in Japanese quail during their first 3 weeks of life. Under controlled laboratory conditions, 12 groups of four chicks were recorded using an activity monitoring system. They were observed between the ages of 2 and 17 days. Chicks in groups presented an ultradian rhythm of activity, with a period that increased significantly from 14.3 ± 1.4 minutes when chicks were 2 days old to 26.0 ± 1.9 minutes when they were 16 days old. The increase of ultradian periodicity was particularly pronounced during their first and third weeks of life. Finally, the ultradian period was correlated positively with body weight of the chicks. (Chronobiology International, 17(6), 767–776, 2000)  相似文献   

14.
Using the percentage labeled mitoses method, seven cell cycle determinations were initiated at 6-hr intervals over a 36-hr span in order to see if the cell cycle in the tadpole hindlimb epidermis varied with time or showed rhythmicity. There was a pattern of two long cell cycles followed by a shorter one. Total cell cycle length (Tc) and the length of the G1 phase plus one-half of the mitotic time (TG1+½M) fluctuated the most, although only TG1+½M varied significantly with the Chi-square test. The proportion of TC spent in each phase was also calculated. Only TG1+½M/Tc had statistically significant fluctuations with time.

Rhythmicity was analyzed by a computer program using the method of least squares for cosine curve fitting. Statistically significant ultradian rhythms of 18.4 hr in TC, 18.5 hr in TG1+½M and 18.6 hr in TG1+½M/TC and the length of the DNA synthetic phase/total cell cycle length (TS/TC) were found. Circadian rhythmicity was not observed. The acrophases of the ultradian rhythms of TC and TG1+½M coincided, suggesting that the rhythm of TC was due mainly to variation in TG1+½M. In the absence of significant variation in TS, the longest phase of the cell cycle, whenever G1M was short, TS/TC increased, so that the 18.6 hr rhythm in TS/TC was also a result of the periodicity in TG1+½M.  相似文献   

15.

One of the earliest experiments that provided support for the exogenous clock hypothesis was a translocation experiment involving fiddler crabs. The activity rhythm of a sample of crabs placed in constant conditions, abandoned (in a week's time) the phase of the tidal cycle to which the crabs had been exposed in nature, and the peaks attuned themselves to the approximate times of lunar nadir and zenith. The study reported in the present paper was an attempt to repeat this interesting and important finding.

The effort at replication was unsuccessful. But other more recent findings of tide‐associated rhythms, such as splitting, uncoupling, and temporary arrhythmicity, were confirmed. And an “ultradian”; rhythm was discovered to exist in conjunction with a typical circalunidian frequency.  相似文献   

16.
Using continuous non-contact registration of the heart rate and motor activity in unrestrained frogs, studies have been made of the effects of hypophysectomy and epiphysectomy on functional state of the organism. It was shown that removal of the epiphysis alleviates the circadian physiological rhythm of natural changes of functional states in wakefulness-primary sleep cycle, whereas removal of the hypophysis results in additional cyclic rhythm of two functional states in the diurnal periodicity of the behaviour. The latter effect is considered to be the ultradian rhythm, which in the intact animals is masked by the circadian one modulated by natural diurnal illumination. It is suggested that removal of the epiphysis reveals endogenous rhythm of the activity typical of periodic regimes of the spontaneous excitation at early stages of ontogenesis.  相似文献   

17.
Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24‐h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.  相似文献   

18.
《Chronobiology international》2013,30(9):1089-1100
Individuals of many species can regulate their physiology, morphology, and behavior in response to annual changes of day length (photoperiod). In mammals, the photoperiodic signal is mediated by a change in the duration of melatonin, leading to alterations in gene expressions, neuronal circuits, and hormonal secretion. The hippocampus is one of the most plastic structures in the adult brain and hippocampal neuronal morphology displays photoperiod-induced differences. Because the hippocampus is important for emotional and cognitive behaviors, photoperiod-driven remodeling of hippocampal neurons is implicated in seasonal differences of affect, including seasonal affective disorder (SAD) in humans. Because neuronal architecture is also affected by the day-night cycle in several brain areas, we hypothesized that hippocampal neuronal morphology would display a diurnal rhythm and that day length would influence that rhythm. In the present study, we examined diurnal and seasonal differences in hippocampal neuronal morphology, as well as mRNA expression of the neurotrophic factors (i.e., brain-derived neurotrophic factor [Bdnf], tropomyosin receptor kinase B [trkB; a receptor for BDNF], and vascular endothelial growth factor [Vegf]) and a circadian clock gene, Bmal1, in the hippocampus of Siberian hamsters. Diurnal rhythms in total length of dendrites, the number of primary dendrites, dendritic complexity, and distance of the furthest intersection from the cell body were observed only in long-day animals; however, diurnal rhythms in the number of branch points and mean length of segments were observed only in short-day animals. Spine density of dendrites displayed diurnal rhythmicity with different peak times between the CA1 and DG subregions and between long and short days. These results indicate that photoperiod affects daily morphological changes of hippocampal neurons and the daily rhythm of spine density, suggesting the possibility that photoperiod-induced adjustments of hippocampal neuronal dynamics might underlie seasonal difference of affective responses. Bmal1 mRNA showed a diurnal rhythm and different expression levels between long and short days were observed. However, there were no strong effects of day length on Bdnf. trkb, and Vegf gene expression, suggesting that these genes are not involved in the photoperiodic effects on hippocampal neurons.  相似文献   

19.
20.
In many insects, mating is affected by the day–night cycle, i.e., diurnal rhythm. Although there are many reports that mating and other reproductive behaviors are controlled by daily rhythms in various taxonomic insect species, little attention has been paid to the effect of daily rhythms on male fighting behavior. Here, we investigate whether the frequency and escalation of male–male aggressive interaction exhibit diurnal rhythms under a long‐day condition in the bean bug Riptortus pedestris. Despite the fact that male aggressive behaviors were most often observed in the middle of the later half of light periods, no interaction was found between escalation of fighting and the time period. The results, at least, suggest that male aggressive behaviors are influenced by diurnal rhythms like other reproductive behaviors in R. pedestris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号