首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charred modern grass epidermis preserves the carbon isotopic composition of the parent plant photosynthetic pathway. Fifty-nine modern grasses and sedges were collected in lowland western Uganda. All charred epidermal samples from C4 grasses or sedges preserve a carbon isotopic value within the range typical for C4 plants (−17 to −10‰), and charred epidermal fragments from C3 plants have carbon isotopic values between −30 and −26‰. The process of charring results in a slightly enriched carbon isotopic signature (−11.9‰ mean charred value as compared to −12.8‰ mean unaltered grass tissue value). δ13C measurements of replicate samples from the same plant vary within 1–2‰, yet all values for the same plant stay within the expected values for the photosynthetic pathway of the plant. δ13C measurements on >180-μm charred grass epidermal fragments extracted from surface sediment samples from three lakes on the lowland western Ugandan landscape confirm the predominant lowland C4 grass input (δ13C=−16 to −19‰). These results demonstrate the utility of using carbon isotopic analysis of charred grass epidermis to reconstruct C3 vs. C4 grassland assemblages on the landscape. Furthermore, such downcore δ13C profiles can be used to highlight key zones of C3 vs. C4 grass change for which taxonomic analysis of fossil grass epidermis could provide more detailed information regarding grassland community composition.  相似文献   

2.
The δ15N and δ13C signatures of major organic matter (OM) pools were measured across chemical and hydrologic gradients in a large (58,800 ha) subtropical wetland to evaluate whether stable isotopes were useful indicators of environmental change. Once a rainfall-driven wetland, the Loxahatchee National Wildlife Refuge in the Florida Everglades now receives agricultural and urban drainage that has increased phosphorus (P) and mineral loads around the wetland perimeter. Additionally, water impoundment at the southern end has produced a latitudinal hydrologic gradient, with extended hydroperiods in the south and overdrained conditions in the north.Detritus (?4.8‰ to 8.6‰), floc (?1.4‰ to 3.6‰), and metaphyton (?6.6‰ to +7.4‰) δ15N declined southward with changes in hydrology as indicated by water depth. This pattern was attributed to higher mineralization rates under shorter hydroperiods. These signatures were also strongly correlated with increased nutrient and mineral loading. Rooted macrophyte δ15N, by contrast, appeared more responsive to soil nutrient pools. Cattail (?8.9‰ to +7.7‰) was restricted to the wetland perimeter and had the widest δ15N range, which was positively correlated with soil P. Sawgrass (?5.3‰ to +7.7‰) occurred across most of the wetland, but its δ15N was not strongly correlated to any gradient. Patterns for δ13C were more strongly related to chemical gradients caused by canal intrusion than to latitude or hydrology. Again, metaphyton and detrital signatures were more sensitive to water chemistry changes than macrophytes. This pattern is consistent with their locations at the soil–water (detritus-floc), and air–water (metaphyton) interface. Metaphyton δ13C (?36.1‰ to ?21.5‰) which had the broadest range, was affected by DIC source and pool size. In contrast, cattail δ13C (?28.7‰ to ?26.4‰) was more closely related to soil P and sawgrass δ13C (?30.1‰ to ?24.5‰) was not related to any environmental gradient except latitude. There was no correlation between the two isotopes for any OM pool except cattail.These results indicate that isotopic signatures of microbial (metaphyton and detrital) pools are more responsive to changes in wetland hydrology and water chemistry while those of rooted macrophytes respond only to the extent that soil chemistry is altered. Rooted macrophytes also differ in the sensitivity of their isotopic signatures to environmental change. The selection of OM pools for isotopic analysis will, therefore, affect the sensitivity of the analysis and the resulting patterns. Furthermore, δ15N may be more robust and interpretable than δ13C as an indicator of ecosystem change in wetlands exposed to multiple or complex anthropogenic gradients.  相似文献   

3.
Biogenic calcretes associated with a regional Cretaceous to Paleogene subaerial unconformity and an intraformational composite (polygenic) surface in Upper Cretaceous intra-platform peritidal successions in central Dalmatia and eastern Istria, Croatia (Adriatic-Dinaridic Carbonate Platform), were analyzed for their δ13C and δ18O signatures in order to provide insight into the conditions of subaerial exposure and calcrete development. The distinctly negative δ13C signatures of biogenic calcretes marking the regional subaerial unconformity differ considerably from the δ13C values of the host marine limestones. This indicates carbon isotope exchange of primary marine CaCO3 with CO2 released by root and rhizomicrobial respiration and subsequent precipitation of pedogenic calcrete. The range of δ13C (from ?13.1 to ?8.2 ‰ Vienna PeeDee Belemnite standard, VPDB) and δ18O (from ?10.1 to ?6.1 ‰ VPDB) values of calcretes are similar to those reported from calcretes elsewhere, and the δ13C values of biogenic calcretes with typical Microcodium aggregates (?13.1 to ?12.3 ‰ VPDB) at the ?ibenik locality are very close to, or at the lower limit of, values for soil carbonates formed in isotopic equilibrium with soil CO2. These values are expected for authigenic pedogenic carbonates formed under the influence of C3 plant communities, without influence from heavier carbon from pre-existing carbonate and lack of input of atmospheric CO2. Such low δ13C values support the interpretation of Microcodium aggregates as being precipitated under a direct biological control within the soil, although the relationship between formation mechanisms and stable isotope signatures of Microcodium needs further investigation. The δ13C values (?4.4 to ?3.6 ‰ VPDB) of rhizogenic calcretes formed inside firmground Thalassinoides burrows of the composite surface at the ?ibenik locality are more negative than the δ13C values of the host marine limestones, which confirms that the composite surface went through a phase of meteoric pedo(dia)genesis. However, the overall δ13C values of calcretes are less negative than expected, which might reflect contamination from associated primary marine carbonate. This study represents the first detailed stable isotope investigation of calcretes from carbonate successions of the External Dinarides, and the results may be applied to discontinuities present in other shallow-water carbonate rock successions.  相似文献   

4.
5.
Stable carbon isotope signatures are often used as tracers for environmentally driven changes in photosynthetic δ13C discrimination. However, carbon isotope signatures downstream from carboxylation by Rubisco are altered within metabolic pathways, transport and respiratory processes, leading to differences in δ13C between carbon pools along the plant axis and in respired CO2. Little is known about the within-plant variation in δ13C under different environmental conditions or between species. We analyzed spatial, diurnal, and environmental variations in δ13C of water soluble organic matter (δ13CWSOM) of leaves, phloem and roots, as well as dark-respired δ13CO213Cres) in leaves and roots. We selected distinct light environments (forest understory and an open area), seasons (Mediterranean spring and summer drought) and three functionally distinct understory species (two native shrubs—Halimium halimifolium and Rosmarinus officinalis—and a woody invader—Acacia longifolia). Spatial patterns in δ13CWSOM along the plant vertical axis and between respired δ13CO2 and its putative substrate were clearly species specific and the most δ13C-enriched and depleted values were found in δ13C of leaf dark-respired CO2 and phloem sugars, ~?15 and ~?33 ‰, respectively. Comparisons between study sites and seasons revealed that spatial and diurnal patterns were influenced by environmental conditions. Within a species, phloem δ13CWSOM and δ13Cres varied by up to 4 ‰ between seasons and sites. Thus, careful characterization of the magnitude and environmental dependence of apparent post-carboxylation fractionation is needed when using δ13C signatures to trace changes in photosynthetic discrimination.  相似文献   

6.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

7.
Insects are the most diverse organisms and often the most abundant animals in some ecosystems. Despite the importance of their functional roles and of the knowledge for conservation, the trophic ecology of many insect species is not fully understood. In this review, I present how stable carbon (C) and nitrogen (N) isotopes have been used to reveal the trophic ecology of insects over the last 30 years. The isotopic studies on insects have used differences in C isotope ratios between C3 and C4 plants, along vertical profiles of temperate and tropical forest stands, and between terrestrial and aquatic resources. These differences enable exploration of the relative importance of the food resources, as well as movement and dispersal of insects across habitats. The 13C‐enrichment (approximately 3‰) caused by saprotrophic fungi can allow the estimation of the importance of fungi in insect diets. Stable N isotopes have revealed food resource partitioning across diverse insect species above and belowground. Detritivorous insects often show a large trophic enrichment in 13C (up to 3‰) and 15N (up to 10‰) relative to the food substrates, soil organic matter. These values are greater than those commonly used for estimation of trophic level. This enrichment likely reflects the prevalence of soil microbial processes, such as fungal development and humification, influencing the isotopic signatures of diets in detritivores. Isotope analysis can become an essential tool in the exploration of insect trophic ecology in terms of biogeochemical C and N cycles, including trophic interactions, plant physiological and soil microbial processes.  相似文献   

8.
Stable carbon, nitrogen, hydrogen and oxygen isotopes have been used to infer aspects of species ecology and environment in both modern ecosystems and the fossil record. Compared to large mammals, stable isotopic studies of small‐mammal ecology are limited; however, high species and ecological diversity within small mammals presents several advantages for quantifying resource use and organism–environment interactions using stable isotopes over various spatial and temporal scales. We analyzed the isotopic composition of hair from two heteromyid rodent species, Dipodomys ordii and Perognathus parvus, from localities across western North America in order to characterize dietary variation in relation to vegetation and climatic gradients. Significant correlations between the carbon isotopic composition (δ13C) of these species and several climatic variables imply that seasonal temperature and precipitation control the composition and distribution of dietary resources (grass seeds). Our results also suggest a moisture influence on the nitrogen isotopic composition (δ15N) of heteromyid diets. Population‐ and species‐level variation in δ13C and δ15N values record fine‐scale habitat heterogeneity and significant differences in resource use between species. Using classification and regression‐tree techniques, we modeled the geographic variation in heteromyid δ13Cdiet values based on 10 climatic variables and generated an isotope landscape model (‘isoscape’). The isoscape predictions for δ13Cdiet differ from expectations based on observed C4 distributions and instead indicate that D. ordii and P. parvus record seasonally abundant grass resources, with additional model deviations potentially attributed to geographic variation in dietary selection. The oxygen and hydrogen isotopic composition of D. ordii is enriched relative to local meteoric water and suggests that individuals rely on highly evaporated water sources, such as seed moisture. Based on the climatic influences on vegetation and diet documented in this study, the isotopic composition of small mammals has high potential for recording ecological responses to environmental changes over short and long time scales.  相似文献   

9.
In this study, components of the food-web in Macao wetlands were quantified using stable isotope ratio techniques based on carbon and nitrogen values. The δ13C and δ15N values of particulate organic matter (δ13CPOM and δ15NPOM, respectively) ranged from ?30.64 ± 1.0 to ?28.1 ± 0.7 ‰, and from ?1.11 ± 0.8 to 3.98 ± 0.7 ‰, respectively. The δ13C values of consumer species ranged from ?33.94 to ?16.92 ‰, showing a wide range from lower values in a freshwater lake and inner bay to higher values in a mangrove forest. The distinct dietary habits of consumer species and the location-specific food source composition were the main factors affecting the δ13C values. The consumer 15N-isotope enrichment values suggested that there were three trophic levels; primary, secondary, and tertiary. The primary consumer trophic level was represented by freshwater herbivorous gastropods, filter-feeding bivalves, and plankton-feeding fish, with a mean δ15N value of 5.052 ‰. The secondary consumer level included four deposit-feeding fish species distributed in Fai Chi Kei Bay and deposit-feeding gastropods in the Lotus Flower Bridge flat, with a mean δ15N value of 6.794 ‰. The tertiary consumers group consisted of four crab species, one shrimp species, and four fish species in the Lotus Flower Bridge Flat, with a mean δ15N value of 13.473 ‰. Their diet mainly comprised organic debris, bottom fauna, and rotten animal tissues. This study confirms the applicability of the isotopic approach in food web studies.  相似文献   

10.
Leaves of 208 trees were collected for isotopic analysis together with wood from 36 tree boles and 18 samples of fine litter from a terra-firme forest located at Samuel Ecological Reserve, Rondônia State, in the southwestern Amazon region. The range of δ13C values in leaves was from ?28 to ?36‰, with an average (±1 SD) of ?32.1?±?1.5‰, which was more negative than the δ13C values of bole samples (?28.4?±?2.0‰) and fine litter (?28.7?±?2.0‰). These values are within the range found for tropical and subtropical forests. Pooling the δ13C values for leaf samples from trees of the same height gave averages which were positively correlated with plant height at a highly significant level, with a slope of 0.06 and an intercept of ?33.3‰ and a correlation coefficient r 2=0.70 (P<0.001).  相似文献   

11.
The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C4 crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C3 carbon sources, whereas many farmland birds also assimilated C4 carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C4 carbon in the farmland than in the forest. Granivores assimilated more C4 carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km?2 year?1. We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.  相似文献   

12.
Aim The spatio‐temporal dynamics of dry evergreen forest patches in the savanna biome of the Kagera region (north‐western Tanzania) are largely unknown owing to a lack of pollen and macrofossil evidence. Our aims were to reconstruct local‐scale shifts of the forest–savanna boundary in order to determine whether the forests have been expanding or retreating on a centennial and millennial time‐scale. Location The Kagera region of north‐western Tanzania, East Africa. Methods The vegetation reconstruction was based on analysing δ13C signatures in soils along a transect spanning both C4 open savanna and C3 forest vegetation. Furthermore, we fractionated soil organic matter (SOM) according to density and chemical stability to analyse δ13C values of soil fractions with distinct radiocarbon ages. Results We found sharp changes in δ13C signatures in bulk SOM from the forest to the savanna, within a few metres along the transect. The forest soil profiles carried a persistent C3‐dominated signature. Radiocarbon dating of the oldest, most recalcitrant forest soil fraction yielded a mean age of 5500 cal. yr bp , demonstrating that the forest has existed since at least the mid‐Holocene. The savanna sites showed a typical C4 isotopic signature in SOM of topsoils, but subsoils and more recalcitrant SOM fractions also contained signals of C3 plants. The dense soil fraction (ρ > 1.6 g cm?3) carrying a pure C4 label had a mean age of c. 1200 cal. yr bp , indicating the minimum duration of the dominance of grass vegetation on the savanna site. At the forest edge, the older C4 grass signature of SOM has steadily been replaced by the more negative δ13C fingerprint of the forest trees. As this replacement has occurred mainly in the 10‐m‐wide forest–savanna ecotone over the last c. 1200 years, the forest expansion must be very slow and is very likely less than 15 m century?1. Main conclusions Our results suggest that forest patches in the Kagera savanna landscape are very stable vegetation formations which have persisted for millennia. During the last millennium, they have been expanding very slowly into the surrounding savanna at a rate of less than 15 m century?1.  相似文献   

13.
The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well‐preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ13C) analysis of bulk decapod cuticle yielded similar mean δ13C values for both taxa (?25.1‰ and ?26‰, respectively). Sedimentary biomarkers were composed of n‐alkanes from C16 to C36, with the short‐chain n‐alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ13C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ13C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian–early Maastrichtian and demonstrates for the first time that organic δ13C signatures in exceptionally preserved fossil marine arthropods are a viable proxy for use in paleoenvironmental reconstructions.  相似文献   

14.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

15.
Variations in foliar stable carbon isotope signatures (δ13C) of different plant functional groups (PFGs) and their relationships with environmental factors in China were investigated in this meta‐analysis. There were some significant, but small differences in δ13C among PFGs categorised by life form (<1‰). Trees (?26.78‰) and shrubs (?26.89‰) had similar mean δ13C that were significantly higher than those of herbs (?27.49‰). Evergreen shrubs (?25.82‰) had significantly higher mean δ13C than deciduous shrubs (?26.92‰). Perennial herbs (?26.83‰) had significantly higher mean δ13C than annual herbs (?27.10‰). Grasses (?26.46‰) had significantly higher mean δ13C than forbs (?26.96‰). For pooled data, δ13C was significantly and negatively correlated with mean annual precipitation (MAP) and mean annual temperature (MAT), while it was significantly and positively correlated with latitude and altitude. There was a threshold value of MAP along the gradients, and δ13C did not change significantly with higher rainfall. The δ13C of PFGs changed with altitude, suggesting that increases in δ13C with altitude cannot be generalised. Differences in δ13C between PFGs were generally much <1‰ and therefore insignificant. In contrast, MAP and MAT had relatively large effects on δ13C (more than 4‰ between extremes). The δ13C of some PFGs responded to environmental gradients in the same manner, while their ‘rates’ of change were significantly different in some cases. This information could help predict potential changes in the distribution of PFGs in response to future climate change.  相似文献   

16.
Abstract: While atmospheric species of bromeliads have narrow leaves, densely covered with water‐absorbing trichomes throughout their life cycles, many tank bromeliads with broad leaves, forming phytotelmata, go through an atmospheric juvenile phase. The effect of the different habits and the phase change in tank‐forming bromeliads on water and nutrient relations was investigated by analysing the relationship between plant size, C/N ratios and the natural abundance of 13C and 15N in five epiphytic bromeliad species or morphospecies of a humid montane forest in Xalapa, Mexico. The atmospheric species Tillandsia juncea and T. butzii exhibited full crassulacean acid metabolism, with δ13C values (mean ‐ 15.3 ‰ and ‐ 14.7 ‰, respectively) independent of size. In Tillandsia species with C3 photosynthesis, δ13C decreased with increasing plant size, indicating stronger drought stress in juveniles. The increase of the C/N ratio with size suggests that, at least in heteroblastic bromeliads, the availability of water is more limiting during early growth, and that limitations of nitrogen supply become more important later on, when water stored in the tank helps to bridge dry periods, reducing water shortage. δ15N values of the two atmospheric species were very negative (‐ 12.6 ‰ and ‐ 12.2 ‰, respectively) and did not change with plant size. Tank‐forming bromeliads had less negative δ15N values (c ‐ 6 ‰), and, in species with atmospheric juveniles and tank‐forming adults, δ15N values increased significantly with plant size. These differences do not appear to be an effect of the isotopic composition of N sources, but rather reflect N availability and limitation and stress‐induced changes in 15N discrimination.  相似文献   

17.
Caution for the indiscriminate conversion of the isotopic niche into ecologic niche was recently advised. We tested the utility of the isotopic niche to answer ecological questions on oceanic islands. We compared the isotopic niches of black rats (Rattus rattus) on two islands in the Gulf of California, Mexico: Farrallón de San Ignacio (FSI) and San Pedro Mártir (SPM). Both islands maintained several species of marine birds, but FSI is devoid of terrestrial vegetation and SPM has several species of terrestrial plants. We tested the hypothesis that rats on FSI have a narrower trophic niche due to its lower diversity of food items. We predicted a smaller variance in δ13C and δ15N values of rat muscle on FSI, and a lower use of marine birds as food on SPM. We also examined stomach contents of rats on both islands to validate the isotopic information. Variances in δ13C and δ15N values of black rats were lower on FSI, and the contribution of marine birds to the diet of rats was smaller on SPM. Stomachs in most rats collected on FSI contained only one or two types of food items, mostly marine birds and terrestrial invertebrates. In contrast, stomachs with only one type of food item were rare on SPM, and in most cases they contained three or more food types. Our findings showed that isotopic variance is a good approximation for trophic niche when comparing populations with access to an assemblage of preys with contrasting biological and isotopic diversity.  相似文献   

18.
Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ13C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ13C signatures. In the photic zone, the δ13Corg signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ13C signatures similar to DIC in the overlying water column (?2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate‐reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter‐scale variability in the δ13Corg signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ13Corg signatures; these processes need to be considered when attempting to relate observed isotopic signatures in ancient sedimentary strata to conditions in the overlying water column at the time of deposition and associated inferences about carbon cycling.  相似文献   

19.
Determining how marine predators partition resources is hindered by the difficulty in obtaining information on diet and distribution. Stable isotopes (SI) of carbon (13C/12C, δ13C) and nitrogen (15N/14N, δ15N) provide a two‐dimensional estimate of the dietary space of consumers; an animal's isotopic composition is directly influenced by what they consume and where they feed. Harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals are abundant phocid species found in the North Atlantic. We measured and contrasted SI values between seals sampled at nearshore and offshore sites to test for effects of sampling location, sex, age‐class, and body size to gain insight into how these species partition space and prey resources. In addition we contrasted previously published results for gray seals (Halichoerus grypus). Isotope values differed significantly by age class and location in harp and hooded seals. We found significant differences in SI values (mean δ13C and δ15N ± SE) between all species. Hooded seals, a continental shelf‐edge, deep‐diving species, exhibited low SI values (juveniles: ?20.9‰ ± 0.03‰, 13.36‰ ± 0.05‰; adults: ?20.41‰ ± 0.03‰, 14.81‰ ± 0.04‰) characteristic of feeding on meso‐ to bathypelagic prey. Harp seals, which dive to moderate depths primarily on the shelf had intermediate SI values (juveniles: ?20.53‰ ± 0.01‰, 13.91‰ ± 0.01‰; adults: ?20.13‰ ± 0.01‰, 14.96‰ ± 0.01‰) characteristic of feeding on epipelagic prey, whereas gray seals, which feed on or near the sea floor in shallow shelf waters, had high SI values (juveniles: ?19.74‰ ± 0.04‰, 17.51‰ ± 0.05‰; adults: ?18.86‰ ± 0.01‰, 17.23‰ ± 0.02‰) characteristic of feeding on demersal prey. In all species, δ13C values increased with body size and age in the same manner, indicating that seals exploit or forage in deeper habitats as they get larger and older. We hypothesize that the consistent ontogenetic shift in foraging niche, despite large differences between species in their diving behavior, geographic range and habitat use, not only reflects increased access to different prey due to increased diving capacity, but a progressive adjustment to balance energy budgets by reducing foraging costs.  相似文献   

20.
The winter‐flowering succulent Aloe marlothii provides nectar for many opportunistic avian nectarivores in southern African savannas. We assessed the importance of A. marlothii nectar sugar for opportunistic nectarivores by analysing temporal changes in stable carbon isotope ratios (δ13C) in the tissues of birds in Suikerbosrand Nature Reserve, South Africa. The blood of the 11 most common non‐granivorous opportunistic nectarivores at our site was enriched in 13C by 3.4 ± 1.5‰ during the flowering period of A. marlothii, reflecting the enriched crassulacean acid metabolism (CAM) isotopic signature of nectar (?12.6 ± 0.5‰). This relatively small contribution of A. marlothii nectar to assimilated carbon in whole blood contrasted with that of exhaled CO2 in African Red‐eyed Bulbuls Pycnonotus nigricans and Cape White‐eyes Zosterops capensis. In both these species, the δ13C of breath samples was significantly enriched compared with blood and feathers, and closely resembled that of the nectar, revealing combustion of ingested nectar rather than assimilation. Although our analysis was complicated by the presence of C4 grasses, whose δ13C values are similar to those of CAM photosynthesizers, when considered with previously published feeding observations our data reveal that opportunistic nectarivores feeding on A. marlothii nectar obtain a relatively small fraction of their assimilated carbon, but most of their metabolized carbon, from this seasonally available carbohydrate food resource. Because the δ13C values of insects associated with C3 plants also became enriched during the flowering season, some insect‐eating opportunistic nectarivores may have assimilated A. marlothii carbon indirectly from insects. This study highlights the importance of understanding isotopic routing when assessing the nutritional significance of specific dietary items to consumer communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号