首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The plant mitochondrial DNA‐binding protein ODB1 was identified from a mitochondrial extract after DNA‐affinity purification. ODB1 (organellar DNA‐binding protein 1) co‐purified with WHY2, a mitochondrial member of the WHIRLY family of plant‐specific proteins involved in the repair of organellar DNA. The Arabidopsis thaliana ODB1 gene is identical to RAD52‐1, which encodes a protein functioning in homologous recombination in the nucleus but additionally localizing to mitochondria. We confirmed the mitochondrial localization of ODB1 by in vitro and in vivo import assays, as well as by immunodetection on Arabidopsis subcellular fractions. In mitochondria, WHY2 and ODB1 were found in large nucleo‐protein complexes. Both proteins co‐immunoprecipitated in a DNA‐dependent manner. In vitro assays confirmed DNA binding by ODB1 and showed that the protein has higher affinity for single‐stranded than for double‐stranded DNA. ODB1 showed no sequence specificity in vitro. In vivo, DNA co‐immunoprecipitation indicated that ODB1 binds sequences throughout the mitochondrial genome. ODB1 promoted annealing of complementary DNA sequences, suggesting a RAD52‐like function as a recombination mediator. Arabidopsis odb1 mutants were morphologically indistinguishable from the wild‐type, but following DNA damage by genotoxic stress, they showed reduced mitochondrial homologous recombination activity. Under the same conditions, the odb1 mutants showed an increase in illegitimate repair bypasses generated by microhomology‐mediated recombination. These observations identify ODB1 as a further component of homologous recombination‐dependent DNA repair in plant mitochondria.  相似文献   

9.
10.
Wei Wang  Juan Liu  Lin Sun 《Proteins》2016,84(7):979-989
Protein‐DNA bindings are critical to many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the residues shape (peak, flat, or valley) and the surrounding environment of double‐stranded DNA‐binding proteins (DSBs) and single‐stranded DNA‐binding proteins (SSBs) in protein‐DNA interfaces. In the results, we found that the interface shapes, hydrogen bonds, and the surrounding environment present significant differences between the two kinds of proteins. Built on the investigation results, we constructed a random forest (RF) classifier to distinguish DSBs and SSBs with satisfying performance. In conclusion, we present a novel methodology to characterize protein interfaces, which will deepen our understanding of the specificity of proteins binding to ssDNA (single‐stranded DNA) or dsDNA (double‐stranded DNA). Proteins 2016; 84:979–989. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
12.
In budding yeast Saccharomyces cerevisiae, telomere length maintenance involves a complicated network as more than 280 telomere maintenance genes have been identified in the nonessential gene deletion mutant set. As a supplement, we identified additional 29 telomere maintenance genes, which were previously taken as essential genes. In this study, we report a novel function of Sua5p in telomere replication. Epistasis analysis and telomere sequencing show that sua5Δ cells display progressively shortened telomeres at early passages, and Sua5 functions downstream telomerase recruitment. Further, biochemical, structural and genetic studies show that Sua5p specifically binds single‐stranded telomeric (ssTG) DNA in vitro through a distinct DNA‐binding region on its surface, and the DNA‐binding ability is essential for its telomere function. Thus, Sua5p represents a novel ssTG DNA‐binding protein and positively regulates the telomere length in vivo.  相似文献   

13.
14.
15.
16.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
18.
Two copper(II) terpyridine complexes, [Cu(atpy)(NO3)(H2O)](NO3) ? 3H2O ( 1 ) and [Cu(ttpy)(NO3)2] ( 2 ) (atpy = 4′‐p‐N9‐adeninylmethyl‐phenyl‐2,2′:6,2″‐terpyridine; ttpy = 4′‐p‐tolyl‐2,2′:6,2″‐terpyridine) exhibited high cytotoxicity, with average ten times more potency than cisplatin against the human cervix carcinoma cell line (HeLa), the human liver carcinoma cell line (HepG2), the human galactophore carcinoma cell line (MCF7), and the human prostate carcinoma cell line (PC‐3). The cytotoxicity of the complex 1 was lower than that of the complex 2 . Both complexes showed more efficient oxidative DNA cleavage activity under irradiation with UV light at 260 nm than in the presence of ascorbic acid. Especially, complex 1 exhibited evident photoinduced double‐stranded DNA cleavage activity. The preliminary mechanism experiments revealed that hydrogen peroxide was involved in the oxidative DNA damage induced by both complexes. From the absorption titration data, the DNA‐binding affinity of the complexes with surpersoiled plasmid pUC19 DNA, polydAdT, and polydGdC was calculated and complex 2 showed higher binding affinity than complex 1 with all these substrates. The DNA cleavage ability and DNA‐binding affinity of both complexes depended on the substituent group on the terpyrdine ligands. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:295–302, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20292  相似文献   

19.
20.
Poly(ADP‐ribose) polymerase‐1 (PARP‐1) is a mammalian enzyme that attaches long branching chains of ADP‐ribose to specific nuclear proteins, including itself. Because its activity in vitro is dependent upon interaction with broken DNA, it has been postulated that PARP‐1 plays an important role in DNA strand‐break repair in vivo. The exact mechanism of binding to DNA and the structural determinants of binding remain to be defined, but regions of transition from single‐stranded to double‐strandedness may be important recognition sites. Here we employ surface plasmon resonance (SPR) to investigate this hypothesis. Oligodeoxynucleotide (ODN) substrates that mimic DNA with different degrees of single‐strandedness were used for measurements of both PARP‐1/DNA binding kinetics and PARP‐1's enzyme activities. We found that binding correlated with activity, but was unrelated to single‐strandedness of the ODN. Instead, PARP‐1 binding and activity were highest on ODNs that modeled a DNA double‐strand break (DSB). These results provide support for PARP‐1 recognizing and binding DSBs in a manner that is independent of single‐stranded features, and demonstrate the usefulness of SPR for simultaneously investigating both PARP‐1 binding and PARP‐1 auto‐poly(ADP‐ribosyl)ation activities within the same in vitro system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号