首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

2.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. Nitric oxide (NO) is a highly reactive nitrogen radical implicated in inflammatory responses. We investigated the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and NO production stimulated by TNF‐α in cultured myoblasts. TNF‐α stimulation caused iNOS expression and NO production in myoblasts (G7 cells). TNF‐α‐mediated iNOS expression was attenuated by integrin‐linked kinase (ILK) inhibitor (KP392) and siRNA. Pretreatment with Akt inhibitor, mammalian target of rapamycin (mTOR) inhibitor (rapamycin), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK) also inhibited the potentiating action of TNF‐α. Stimulation of cells with TNF‐α increased ILK kinase activity. TNF‐α also increased the Akt and mTOR phosphorylation. TNF‐α mediated an increase of NF‐κB‐specific DNA–protein complex formation, p65 translocation into nucleus, NF‐κB‐luciferase activity was inhibited by KP392, Akt inhibitor, and rapamycin. Our results suggest that TNF‐α increased iNOS expression and NO production in myoblasts via the ILK/Akt/mTOR and NF‐κB signaling pathway. J. Cell. Biochem. 109: 1244–1253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
As a malignant tumour of the central nervous system, glioma exhibits high incidence and poor prognosis. Although TNIP1 and the TNF‐α/NF‐κB axis play key roles in immune diseases and inflammatory responses, their relationship and role in glioma remain unknown. Here, we revealed high levels of TNIP1 and TNF‐α/NF‐κB in glioma tissue. Glioma cell proliferation was activated with TNF‐α treatment and showed extreme sensitivity to the TNF receptor antagonist. Furthermore, loss of TNIP1 disbanded the A20 complex responsible for IκB degradation and NF‐κB nucleus translocation, and consequently erased TNFα‐induced glioma cell proliferation. Thus, our investigation uncovered a vital function of the TNIP1‐mediated TNF‐α/NF‐κB axis in glioma cell proliferation and provides novel insight into glioma pathology and diagnosis.  相似文献   

4.
Cementum regeneration, as one of the most difficult challenges of periodontal regeneration, is influenced by inflammatory factors. Inflammation may hamper or promote periodontal tissue repair under different circumstances, as it is found to do in dentin‐pulp complex and bone tissue. Our team demonstrated that YAP promotes mineralization of OCCM, a cementoblast cell line. However, the effect of YAP on its mineralization under inflammatory microenvironment is unclear. In this study, cementogenesis in vitro was up‐regulated after transient TNF‐α treatment for 30 minutes. YAP expression also was increased by TNF‐α treatment. YAP overexpression promoted OCCM mineralization after the cells were transiently treated with TNF‐α because YAP overexpression inhibited NF‐κB pathway activity, while YAP knockdown elevated it. The inhibited mineralization potential and activated NF‐κB pathway activity by YAP knockdown also were partly rescued by the application of the NF‐κB inhibitor Bay 11‐7082. These results demonstrated that YAP plays a positive role in the mineralization of TNF‐α transiently treated cementoblast, partly by inhibiting the NF‐κB pathway activity.  相似文献   

5.
6.
Human dental pulp cells (HDPCs) play a crucial role in dental pulp inflammation. Pannexin 3 (Panx3), a member of Panxs (Pannexins), has been recently found to be involved in inflammation. However, the mechanism of Panx3 in human dental pulp inflammation remains unclear. In this study, the role of Panx3 in inflammatory response was firstly explored, and its potential mechanism was proposed. Immunohistochemical staining showed that Panx3 levels were diminished in inflamed human and rat dental pulp tissues. In vitro, Panx3 expression was significantly down‐regulated in HDPCs following a TNF‐α challenge in a concentration‐dependent way, which reached the lowest level at 10 ng/ml of TNF‐α. Such decrease could be reversed by MG132, a proteasome inhibitor. Unlike MG132, BAY 11‐7082, a NF‐κB inhibitor, even reinforced the inhibitory effect of TNF‐α. Quantitative real‐time PCR (qRT‐PCR) and enzyme‐linked immunosorbent assay (ELISA) were used to investigate the role of Panx3 in inflammatory response of HDPCs. TNF‐α‐induced pro‐inflammatory cytokines, interleukin (IL)‐1β and IL‐6, were significantly lessened when Panx3 was overexpressed in HDPCs. Conversely, Panx3 knockdown exacerbated the expression of pro‐inflammatory cytokines. Moreover, Western blot, dual‐luciferase reporter assay, immunofluorescence staining, qRT‐PCR and ELISA results showed that Panx3 participated in dental pulp inflammation in a NF‐κB‐dependent manner. These findings suggested that Panx3 has a defensive role in dental pulp inflammation, serving as a potential target to be exploited for the intervention of human dental pulp inflammation.  相似文献   

7.
8.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
We had previously identified that the co‐expression of transmembrane CXCL16 (TM‐CXCL16) and its receptor CXCR6 is an independent risk factor for poor survival in patients with diffuse large B‐cell lymphoma (DLBCL). However, the impact of the soluble form of CXCL16 (sCXCL16) on the pathogenesis of DLBCL remains unknown. In the present study, the synergistic effect of sCXCL16 and tumor necrosis factor α (TNF‐α) on apoptosis in DLBCL cell lines (OCI‐LY8 and OCI‐LY10) was investigated in vitro. sCXCL16 reinforced TNF‐α‐mediated inhibition of DLBCL cell proliferation, as determined by the cell counting kit‐8 assay. The results of annexin V staining showed that sCXCL16 enhanced TNF‐α‐induced apoptosis in OCI‐LY8 and OCI‐LY10 cells through a death receptor‐caspase signaling pathway. The results of gene microarray suggested a significant upregulation of differentially expressed genes in the TNF signaling pathway. sCXCL16 increased the concentration of extracellular TNF‐α by binding to CXCR6 to activate the nuclear factor‐κB (NF‐κB) signaling pathway. TNF‐α also induced the secretion of sCXCL16 by increasing the expression of ADAM10, which is known to cleave TM‐CXCL16 to yield sCXCL16. Moreover, bioinformatics analysis revealed that elevated TNF‐α and ADAM10 expression levels in tumor tissues predicted better survival in patients with DLBCL. Thus, our study suggests that sCXCL16 enhances TNF‐α‐induced apoptosis of DLBCL cells, which may involve a positive feedback loop consisting of TNF‐α, ADAM10, sCXCL16, and members of the NF‐κB pathway. sCXCL16 and TNF‐α may be used as prognostic markers in the clinic, and their combinational use is a promising approach in the context of DLBCL therapy.  相似文献   

11.
Whether dendritic cell (DC) derived exosomes play a role in the progression of endothelial inflammation and atherosclerosis remains unclear. Using a transwell system and exosome release inhibitor GW4869, we demonstrated that mature DCs contributed to endothelial inflammation and exosomes were involved in the process. To further confirm this finding, we isolated exosomes from bone marrow dendritic cell (BMDC) culture medium (named DC‐exos) and stimulated human umbilical vein endothelial cell (HUVEC) with these DC‐exos. We observed that mature DC‐exos increased HUVEC inflammation through NF‐κB pathway in a manner similar to that of lipopolysaccharide. After a protein array analysis of exosomes, we identified and confirmed tumour necrosis factor (TNF)‐α on exosome membrane being the trigger of NF‐κB pathway in HUVECs. We then performed an in vivo study and found that the aorta endothelial of mice could uptake intravenously injected exosomes and was activated by these exosomes. After a period of 12 weeks of mature DC‐exos injection into ApoE?/? mice, the atherosclerotic lesions significantly increased. Our study demonstrates that mature DCs derived exosomes increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. This finding extends our knowledge on how DCs affect inflammation and provides a potential method to prevent endothelial inflammation and atherosclerosis.  相似文献   

12.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Previous studies have shown that the tumor necrosis factor‐α (TNF‐α) levels in serum and bone tissues formed in avascular necrosis of femoral head (ANFH) patients were higher than those of normal individuals, indicating TNF‐α might play a role in the pathogenesis of ANFH. However, the underlying mechanisms remain unclear. Hematoxylin and eosin staining was performed to show the pathological changes of ANFH bone tissues. TNF‐α expression in normal and ANFH tissues was examined by quantitative real‐time polymerase chain reaction and western blot analyses. Osteoblast autophagy and apoptosis, as well as signaling pathways activation, were measured by their corresponding marker proteins. Osteoblast proliferation, autophagy, and apoptosis were evaluated using cell counting kit‐8, transmission electron microscopy, and flow cytometry. The structures of bone tissues of ANFH were obviously damaged. TNF‐α expression was significantly upregulated in ANFH bone tissues compared to normal tissues. Autophagy and apoptosis were remarkably promoted, and p38 mitogen‐activated protein kinase (MAPK)/nuclear factor‐κB (NF‐κB) signaling pathways were markedly activated in ANFH. Suppression of the p38 MAPK/NF‐κB pathway significantly attenuated the TNF‐α‐induced autophagy, however, enhanced the TNF‐α‐induced apoptosis in osteoblasts. Increased TNF‐α in ANFH regulated osteoblast autophagy and apoptosis by p38 MAPK/NF‐κB signaling pathways, blocking the pathway by inhibitors exacerbated TNF‐α‐induced apoptosis through impairing autophagy flux.  相似文献   

14.
15.
The oxidative stress caused by endothelial injury is involved in intimal hyperplasia (IH) in vein grafts. Mesenchymal stem cells (MSCs) can home to injured intima and promote endothelial repair. However, MSC apoptosis is increased accompanied by decreased functional activity under oxidative stress. Thus, we investigate whether tumour necrosis factor‐α (TNF‐α) can promote the survival and activity of MSCs under oxidative stress to reduce IH more effectively, and establish what role the NF‐κB pathway plays in this. In this study, we preconditioned MSCs with TNF‐α (TNF‐α‐PCMSCs) for 24 hrs and measured the activation of the IKK/NF‐κB pathway. EdU and transwell assays were performed to assess proliferation and migration of TNF‐α‐PCMSCs. Apoptosis and migration of TNF‐α‐PCMSCs were evaluated in conditions of oxidative stress by analysis of the expression of Bcl‐2 and CXCR4 proteins. TNF‐α‐PCMSCs were transplanted into a vein graft model, so that cell homing could be tracked, and endothelial apoptosis and IH of vein grafts were measured. The results demonstrated that TNF‐α promotes proliferation and migration of MSCs. Furthermore, survival and migration of TNF‐α‐PCMSCs under oxidative stress were both enhanced. A greater number of MSCs migrated to the intima of vein grafts after preconditioning with TNF‐α, and the formation of neointima was significantly reduced. These effects could be partially abolished by IKK XII (NF‐κB inhibitor). All these results indicate that preconditioning with TNF‐α can promote survival and migration of MSCs under oxidative stress via the NF‐κB pathway and thus attenuate IH of vein grafts.  相似文献   

16.
Recently, it has been found that overproduction of IL‐12 can be dangerous to the host as it is involved in the pathogenesis of a number of autoimmune inflammatory diseases such as multiple sclerosis. It is composed of two different subunits – p40 and p35. Expression of p40 mRNA but not that of p35 mRNA in excessive amount in the CNS of patients with Multiple Sclerosis (MS) suggests that IL‐12 p40 may have a role in the pathogenesis of the disease. The present study was undertaken to explore the role of p40 in the expression of TNF‐α in microglia. Interestingly, we have found that IL‐12 p70, p402 (the p40 homodimer) and p40 (the p40 monomer) dose‐dependently induced the production of TNF‐α in BV‐2 microglial cells. This induction of TNF‐α production was accompanied by an induction of TNF‐α mRNA. In addition to BV‐2 glial cells, p70, p402 and p40 also induced the production of TNF‐α in mouse primary microglia and peritoneal macrophages. Since the activation of both NF‐κB and C/EBPb is important for the expression of TNF‐α in microglial cells, we investigated the effect of p40 on the activation of NF‐κB as well as C/EBPb. Activation of NF‐κB as well as C/EBPb by p40 and inhibition of p40‐induced expression of TNF‐α by Dp65, a dominant‐negative mutant of p65, and DC/EBPb, a dominant‐negative mutant of C/EBPb, suggests that p40 induces the expression of TNF‐α through the activation of NF‐κB and C/EBPb. This study delineates a novel role of IL‐12 p40 in inducing the expression of TNF‐α in microglial cells which may participate in the pathogenesis of neuroinflammatory diseases. Acknowledgements: This study was supported by NIH grants (NS39940 and AG19487).  相似文献   

17.
18.
19.
Tumour necrosis factor (TNF)‐α has been considered to induce ischaemia‐reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor‐γ co‐activator (PGC)‐1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC‐1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF‐α had increased TNF‐α levels and resulted in down‐regulation of PGC‐1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF‐α by neutralizing antibody reversed PGC‐1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC‐1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF‐α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral‐Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF‐α. However, there was no up‐regulation of PGC‐1α. These findings suggest that PGC‐1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF‐α‐induced hepatic IRI. Inhibition of the TNF‐α or PGC‐1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号