首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fern genus Lepisorus represents one of the most complicated and controversial lineages in Polypodiaceae, with about 80 species which have been classified into several separate genera, and is notorious for its taxonomic difficulty. Despite progress in recent phylogenetic studies of the family Polypodiaceae involving Lepisorus and its allies, the deep phylogenetic relationship within this group of ferns is still unresolved, and no formal infrageneric classification has been proposed. This contribution presents the most comprehensive phylogenetic analysis of the genus, with 72% species sampled, using a total-evidence approach based on eight plastid markers and ≤25 morphological characters for each species. The analyses resolve the backbone relationship and yield the most robust phylogenetic framework to date. Congruent with previous studies but with new findings, the results herein show that Lepisorus is monophyletic when Neolepisorus, Lemmaphyllum, Tricholepidium, Neocheiropteris and Lepidomicrosorium are included, as well as Lepisorus jakonensis and Paragramma. Furthermore, 17 well-resolved clades are found in the phylogenetic topology, which can be characterized by morphological synapomorphies from traits of rhizome scales, laminae, sori and paraphyses. Based on molecular and morphological evidence, a new infrageneric classification system of Lepisorus is proposed which subdivided Lepisorus into 17 sections.  相似文献   

2.
The Aizoaceae is the largest family of leaf succulent plants, and most of its species are endemic to southern Africa. To evaluate subfamilial, generic, and tribal relationships, we produced two plastid DNA data sets for 91 species of Aizoaceae and four outgroups: rps16 intron and the trnL-F gene region (both the trnL intron and the trnL-F intergenic spacer). In addition, we generated two further plastid data sets for 56 taxa restricted to members of the Ruschioideae using the atpB-rbcL and the psbA-trnH intergenic spacers. In the combined tree of the rps16 intron and trnL-F gene region, three of the currently recognized subfamilies (Sesuvioideae, Mesembryanthemoideae, and Ruschioideae) are each strongly supported monophyletic groups. The subfamily Tetragonioideae is polyphyletic, with Tribulocarpus as sister to the Sesuvioideae and Tetragonia embedded in the Aizooideae. Our study showed that the group consisting of the Sesuvioideae, Aizooideae, and Tetragonioideae does not form a monophyletic entity. Therefore, it cannot be recognized as a separate family in order to accommodate the frequently used concept of the Mesembryanthemaceae or "Mesembryanthema," in which the subfamilies Mesembryanthemoideae and Ruschioideae are included. We also found that several genera within the Mesembryanthemoideae (Mesembryanthemum, Phyllobolus) are not monophyletic. Within the Ruschioideae, our study retrieved four major clades. However, even in the combined analysis of all four plastid gene regions, relationships within the largest of these four clades remain unresolved. The few nucleotide substitutions that exist among taxa of this clade point to a rapid and recent diversification within the arid winter rainfall area of southern Africa. We propose a revised classification for the Aizoaceae.  相似文献   

3.
Phylogenetic analyses of four plastid DNA regions, the rbcL exon, trnL intron, trnL-trnF intergenic spacer, and rps16 intron from each of 73 species in the African genus Moraea (Iridaceae: Irideae) including accessions of all major species clusters in the genus, show Moraea to be paraphyletic when Barnardiella, Galaxia, Hexaglottis, Homeria (all southern African), and Gynandriris (Eurasian as well) were recognized as separate genera. There are several small, isolated species clusters at the basal nodes of the tree that are all restricted to the winter-rainfall zone of southern Africa (the Greater Cape floral kingdom) and a few, highly derived, large species groups that have radiated extensively within the winter-rainfall zone. Mapping of floral traits shows that an Iris-type flower is ancestral in Moraea. Floral changes are associated with shifts in pollination systems, either from passive pollen deposition on long-tongued bees foraging for nectar to active pollen collection by female bees foraging for pollen, fly, or hopliine scarab beetle pollination. Dating the nodes of the phylogenetic tree using non-parametric rate smoothing with a calibration point derived from broad dating of the angiosperms indicates that the divergence between Moraea and its sister genus Ferraria occurred about 25 mya in the early Miocene. The early radiation of Moraea took place against a background of aridification and the spread of open habitats, such as desert, shrubland, and fynbos.  相似文献   

4.
5.
6.
We present a phylogeny of the Asian pitvipers, based on 2403 bp of four mitochondrial gene regions. All but six known species of Trimeresurus sensu stricto (s.s.) as currently defined, as well as multiple populations of widespread species, which may yet be described as full species, and representatives of all other Asian pitviper genera, are included. Both the greater sampling and larger dataset provide improved resolution over previous studies and support the existence of distinct species groups within Trimeresurus s.s. Although all but two species currently referred to this genus form a monophyletic group, morphological and molecular analyses identify four subgroups that warrant recognition at the generic level. We propose a new generic arrangement to reflect these findings. We also highlight the non-monophyly of Ovophis, and propose a new genus to accommodate a species formerly assigned to Ovophis.  相似文献   

7.
Phylogenetic relationships within the brown algal order Sphacelariales and with its sister group were investigated using chloroplast-encoded psbC and rbcL DNA sequences. A pilot study with 21 non-sphacelarialeans, representing nine orders (and some incertae sedis taxa), showed a strongly supported monophyly of the Sphacelariales with its sister taxa Phaeostrophion irregulare, Bodanella lauterborni and Heribaudiella fluviatilis. These three taxa were selected as outgroup for further analyses including DNA sequences of 30 sphacelarialean specimens representing all but two of the recognized genera (Phloiocaulon and Ptilopogon were not sampled). Bayesian Inference and Maximum Likelihood trees showed some incongruence with Maximum Parsimony trees. Trees based on rbcL showed some incongruence with trees based on psbC and combined alignments. Phylogenetic results were used as the basis for a newly proposed classification of the Sphacelariales that reflects evolutionary history. The Sphacelariales is subdivided into four families: Cladostephaceae (monotypic), Sphacelariaceae, Stypocaulaceae, and a newly created monotypic family Sphacelodermaceae to incorporate Sphaceloderma caespitula, comb. nov. (former Sphacelaria caespitula). Sphacelaria radicans is transferred to a newly created genus Protohalopteris and classified in the Stypocaulaceae, which also contains the two unsampled genera Phloiocaulon and Ptilopogon as well as the genus Halopteris. The genera Stypocaulon and monotypic Alethocladus were merged with Halopteris. The Sphacelariaceae were subdivided into six genera including Sphacelaria (consisting only of the former subgenus Propagulifera) and the monotypic Sphacella. Herpodiscus durvillaeae, Sphacelaria pulvinata and the Sphacelaria subgenera Bracteata and Reinkea were merged in an emended Herpodiscus. A new genus Sphacelorbus was created for Sphacelaria nana. Battersia was reinstated for Sphacelaria mirabilis and the subgenus Pseudochaetopteris, except for Sphacelaria plumosa for which Chaetopteris was reinstated.  相似文献   

8.
Erotini is a small tribe of net‐winged beetles known from the northern temperate zone. We investigated relationships and limits of tribes and genera using a molecular phylogeny inferred from rrnL, cox1 and nad5 mtDNA fragments. Lopheros Leconte, 1881 and Pseudaplatopterus Kleine, 1940 were inferred in current molecular analyses as terminal lineages within Erotini. Therefore, we consider Lopherotini Kazantsev, 2012 and Pseudaplatopterina Kazantsev, 2012 as junior synonyms of Erotini Leconte, 1881. The Platycis genus group comprises 19 species representing several genus‐group taxa previously placed in Platycis s. l. Konoplatycis Nakane, 1969 was recovered as a deeply rooted lineage of Erotini and we inferred another independent lineage for which we propose a new genus Sinoplatycis gen. nov. Additionally, we studied the diversity of Platycis s. l. in Asia, found their highest diversity in the temperate forest habitats of Eastern Asia and inferred the paraphyletic character of the subgenus Erotides s. str. Five new species are described from China: Sinoplatycis cardinalis sp. nov. , S. zhani sp. nov. (type species of Sinoplatycis gen. nov. ), Erotides brunnescens sp. nov. , E. pusillus sp. nov. and E. slipinskii sp. nov. The molecular phylogeny shows deep splits of Japanese species with respect to the continental Eurasian fauna and the role of shallow seas and mountain systems in the diversification of the Platycis genus group.  相似文献   

9.
A molecular phylogeny of anseriformes based on mitochondrial DNA analysis   总被引:8,自引:0,他引:8  
To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, Somateria, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen. The Tadornini diverged early on from the Anatinae; then the Mergini and a large group that comprises the Anatini, Aythyini, Cairinini, and two isolated genera, Chenonetta and Marmaronetta, diverged. The phylogeny obtained with the control region appears more robust than the one obtained with mitochondrial protein-coding genes such as ND2 and cytb. This suggests that the CR is a powerful tool for bird phylogeny, not only at a small scale (i.e., relationships between species) but also at the family level. Whereas morphological analysis effectively resolved the split between Anatinae and Anserinae and the existence of some of the clades, the precise composition of the clades are different when morphological and molecular data are compared.  相似文献   

10.
Phylogenetic analyses were conducted for Astilbe (Saxifragaceae), an Asian/eastern North American disjunct genus, using sequences of nuclear ribosomal internal transcribed spacer (ITS) and plastid matK, trnL‐trnF and psbA‐trnH regions. The monophyly of Astilbe is well supported by both ITS and plastid sequences. Topological incongruence was detected between the plastid and the ITS trees, particularly concerning the placement of the single North American species, A. biternata, which may be most probably explained by its origin involving hybridization and/or allopolyploidy with plastid capture. In Astilbe, all species with hermaphroditic flowers constitute a well‐supported clade; dioecious species form a basal grade to the hermaphroditic clade. Astilbe was estimated to have split with Saxifragopsis from western North America at 20.69 Ma (95% HPD: 12.14–30.22 Ma) in the early Miocene. This intercontinental disjunction between Astilbe and Saxifragopsis most likely occurred via the Bering land bridge. The major clade of Astilbe (all species of the genus excluding A. platyphylla) was inferred to have a continental Asian origin. At least three subsequent migrations or dispersals were hypothesized to explain the expansion of Astilbe into North America, Japan and tropical Asian islands. The intercontinental disjunct lineage in Astilbe invokes a hybridization event either in eastern Asia or in North America. This disjunction in Astilbe may be explained by a Beringian migration around 3.54 Ma (95% high posterior density: 1.29–6.18 Ma) in the late Tertiary, although long‐distance dispersal from eastern Asia to North America is also likely. The biogeographical connection between continental Asia, Taiwan, the Philippines and other tropical Asian islands in Astilbe provides evidence for the close floristic affinity between temperate or alpine south‐western China and tropical Asia. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

11.
12.
Authors studied the phylogeny of Dipsacaceae using maximum parsimony and Bayesian analyses on sequence data from chloroplast (trnL intron, trnL–trnF intergenic spacer, psbB–psbH gene complex) and nuclear genomes (ITS1 and ITS2). Both data partitions as well as their combination show that Dipsacaceae is a monophyletic group. Topology in tribe Scabioseae is similar to those of other recent studies, except for the position of Pycnocomon, which is nested in Lomelosia. Pycnocomon, the pollen and epicalyx morphologies of which closely resemble those of Lomelosia, is interpreted as a psammophilous morphotype of Lomelosia, and its nomenclature has been revised accordingly. Exclusion of Pseudoscabiosa, Pterocephalidium, Pterocephalodes (and probably Bassecoia), Succisa, Succisella from Scabioseae is confirmed. Pterocephalodes hookeri is the sister group to the rest of the family. Its remoteness from Pterocephalus has been confirmed on molecular grounds. Lack of evident synapomorphies for various clades is interpreted as a possible consequence of fast adaptative radiation.  相似文献   

13.
The phylogenetic relationships among the fishes in the perciform tribe Epinephelini (Serranidae) have long been poorly understood, in large part because of the numerous taxa that must be considered and the large, circumtropical distribution of the group. In this study, genetic data from two nuclear (Tmo-4C4 and histone H3) and two mitochondrial (16S and 12S) genes were gathered from 155 serranid and acanthomorph species as a means of developing a phylogenetic hypothesis using both maximum-likelihood and -parsimony criteria. The maximum-parsimony analysis recovered 675 most parsimonious trees of length 5703 steps (CI = 0.2523, HI = 0.7477, RI = 0.6582), and the maximum-likelihood analysis recovered 1 tree at −lnLikelihood = 28279.58341. These phylogenetic hypotheses are discussed in light of previous morphological evidence to evaluate the evolutionary history of the group and their implications for the currently recognized taxonomy. Our results question the monophyly of the Serranidae, as well as the genera Cephalopholis, Epinephelus, and Mycteroperca as currently defined. The Serranidae is monophyletic only with the exclusion of the genera Acanthistius and Niphon. We propose a revised classification of the tribe Epinephelini that reflects the hypothesized shared ancestry of the group and recognizes 11 genera: Alphestes, Cephalopholis, Dermatolepis, Epinephelus, Gonioplectrus, Hyporthodus (which is resurrected for 11 species of deep-bodied groupers), Mycteroperca (including 7 species heretofore allocated to Epinephelus), Plectropomus, Saloptia, Triso, and Variola.  相似文献   

14.
Escallonia (Escalloniaceae) is a New World genus of c. 39 species distributed mainly in the South American highlands. Plastid DNA sequence data from the intergenic spacers trnS‐trnG and 3′ trnV‐ndhC and the ndhF gene for 32 species were used to examine the relationships among species and related genera and to analyse the relationship between phylogeny and the geographical distribution of the species. Maximum parsimony and Bayesian inference were employed to analyse the data. The sister relationship of Escallonia to Forgesia and Valdivia was corroborated. We recovered five strongly supported clades that are geographically structured, suggesting that the evolutionary history of the genus may be linked to historical processes, including the uplift of mountainous systems in South America. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 442–451.  相似文献   

15.
We studied the phylogeny and systematics of the tribe Paragini (Diptera: Syrphidae) using morphological and molecular data. The paper presents separate parsimony analyses of both adult morphological characters and partial DNA sequence data from mitochondrial cytochrome c oxidase I and nuclear ribosomal 28S rRNA gene, as well as a combined analysis of all the data. The data set of morphological characters included some features of the male terminalia (i.e. shape of the ejaculatory apodeme; relative position of elements of the aedeagal complex; shape of surstylar apodeme; shape of the aedeagal apodeme) not previously used in the systematics of the Paragini. The trees obtained from separate parsimony analyses of molecular and morphological data produced almost identical topologies. Four lineages are supported by the combined data set, and we establish two new subgenera, i.e. Serratoparagus Vujić et Radenković subgen. nov., and Afroparagus Vujić et Radenković subgen. nov., and redefine Pandasyopthalmus Stuckenberg, 1954 stat. rev. and Paragus Latreille, 1804, stat. rev. The monophyly of the Pandasyopthalmus clade, including the species fitting neither of the current species groups ( jozanus -group) of Paragini, is established. Diagnoses of all known species groups are presented, including a new arrangement of almost all valid species of Paragini.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 507–536.  相似文献   

16.
We investigated the phylogenetic relationships in Tulipa in Turkey using DNA sequences from the plastid trnL‐trnF region and the internal transcribed spacer (ITS) of nuclear ribosomal DNA. We generated trnL‐trnF and nuclear ITS sequences for 11 Tulipa spp. from Turkey and compared the utility of trnL‐trnF and ITS sequences for phylogenetic analysis. Neighbor‐joining, Bayesian and maximum parsimony methods were implemented using the same matrices. Our study of Tulipa based on molecular data revealed congruent results with previous studies. Despite the relatively lower resolution of trnL‐trnF than that of ITS, both sequence matrices generated similar results. Three clades were clearly distinguished, corresponding to subgenera Tulipa, Eriostemones and Orithyia. It is not fully resolved whether Clusianae should be recognized as a separate section of subgenus Tulipa or a distinct subgenus. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 270–279.  相似文献   

17.
DNA sequence data from plastid matK and trnL-F regions were used in phylogenetic analyses of Diurideae, which indicate that Diurideae are not monophyletic as currently delimited. However, if Chloraeinae and Pterostylidinae are excluded from Diurideae, the remaining subtribes form a well-supported, monophyletic group that is sister to a "spiranthid" clade. Chloraea, Gavilea, and Megastylis pro parte (Chloraeinae) are all placed among the spiranthid orchids and form a grade with Pterostylis leading to a monophyletic Cranichideae. Codonorchis, previously included among Chloraeinae, is sister to Orchideae. Within the more narrowly delimited Diurideae two major lineages are apparent. One includes Diuridinae, Cryptostylidinae, Thelymitrinae, and an expanded Drakaeinae; the other includes Caladeniinae s.s., Prasophyllinae, and Acianthinae. The achlorophyllous subtribe Rhizanthellinae is a member of Diurideae, but its placement is otherwise uncertain. The sequence-based trees indicate that some morphological characters used in previous classifications, such as subterranean storage organs, anther position, growth habit, fungal symbionts, and pollination syndromes have more complex evolutionary histories than previously hypothesized. Treatments based upon these characters have produced conflicting classifications, and molecular data offer a tool for reevaluating these phylogenetic hypotheses.  相似文献   

18.
We conducted phylogenetic analyses of the sect. Caprini and its closely related sections within Astragalus. Analyses of a combined dataset including nrDNA ETS and three cpDNA markers using maximum parsimony and Bayesian inference from 44 species of sect. Caprini and its allied taxa yielded congruent relationships among several major lineages. These results largely disagree with previously recognized taxonomic groups, most notably in the following ways: (1) subsects. Caprini and Purpurascentes of sect. Caprini are not natural groups; (2) sects. Alopecuroidei and Laxiflori are nested within sect. Astragalus; and (3) subsect. Chronopus constitutes a separate phylogenetic lineage. Representatives of sects. Astragalus, Alopecuroidei, and Laxiflori share a common ancestor with that of sect. Caprini. Our studies indicate that Astragalus annularis is an outlier species for the genus Astragalus and sect. Caraganella is the first-diverging clade within the genus Astragalus. Results of these analyses are supported by morphology and suggest the need for new taxonomic delimitations, which are forthcoming. Key morphological characters were mapped onto the phylogenetic tree and discussed.  相似文献   

19.
The tribe Sonerileae in tropical Africa and Madagascar is a morphologically diverse lineage that consists of 239 species in 10 genera. In this study, we present the first in-depth phylogenetic analysis of African Sonerileae to test monophyly of the currently recognized genera. Phylogenetic analyses were performed using sequence data from two nuclear (nrITS and nrETS) and three plastid loci (accD-psaI, ndhF and psbK-psbL). Sampling consisted of 140 accessions including 64 African, 27 Malagasy, 46 Asian, and three neotropical Sonerileae together with a broad outgroup sampling (105 spp.). Phylogenetic relationships were inferred using maximum likelihood and Bayesian inference approaches, and a careful reassessment of morphological characters was carried out. Our results neither support the monophyly of the Old World nor African Sonerileae. The monospecific African genus Benna is partially supported as sister to Phainantha, one of the basal neotropical lineages, while African and Malagasy Medinilla are nested among the SE Asian genera. Gravesia (116 spp.), the most species-rich and morphologically diverse genus in Madagascar, is recovered as monophyletic. The African genera of Sonerileae Calvoa, Dicellandra, and Preussiella form well-supported clades. In contrast, Amphiblemma (including Amphiblemma molle) and Cincinnobotrys s.l. (including Cincinnobotrys felicis) are not monophyletic. To accommodate the caulescent C. felicis we propose reinstatement of the monospecific genus Bourdaria. For the distinctive A. molle a new genus Mendelia is described. Calvoa hirsuta is designated here as the type of genus Calvoa, lectotypes are designated for Medinilla engleri and Veprecella lutea, and a neotype is designated for Preussiella kamerunensis.  相似文献   

20.
Past classifications of the tribe Acacieae Rchb. are outlined and the confusion concerning the relationships of the three subgenera of Acacia Mill. are highlighted. A plastid DNA analysis of Acacieae shows that the genus Acacia is not monophyletic. Furthermore subgenera Acacia Vassal and Aculeiferum Vassal are sister taxa and neither appear closely related to subgenus Phyllodineae (DC.) Ser. Subgenera Acacia and Aculeiferum form a clade that is basal to a well-supported clade consisting of tribe Ingeae Benth. taxa, Faidherbia albida (Del.) A. Chev. and subgenus Phyllodineae. The series of relationships suggested by the cpDNA data contradicts previous investigations of the tribe. Possible explanations of this conflict are explored, and the taxonomic implications of the plastid DNA data set are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号