首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many peroxisomal proteins are imported into peroxisomes via recognition of the peroxisomal targeting signal (PTS1) present at the C-termini by the PTS1 receptor (Pex5p). Catalase, a peroxisomal protein, has PTS1-like motifs around or at the C-terminus. However, it remains unclear whether catalase is imported into peroxisome via the PTS1 system. In this work, we analyzed the PTS of pumpkin catalase (Cat1). A full or truncated pumpkin Cat1 cDNA fused at the 3' end of the green fluorescent protein (GFP) coding sequence was introduced and stably expressed in tobacco BY-2 (Nicotiana tabacum cv. Bright Yellow 2) cells or Arabidopsis thaliana by Agrobacterium-mediated transformation. The cellular localization of GFP was analyzed by fluorescence microscopy. The results showed that the C-terminal 10-amino acid region containing an SKL motif-like tripeptide (SHL) was not required for the import into peroxisomes. Surprisingly, the C-terminal 3-amino acid region was required for the import when the fusion proteins were transiently expressed by using particle gun bombardment, suggesting that the transient expression system is inadequate to analyze the targeting signal. We proposed that the C-terminal amino acid region from 13 to 11 (QKL), which corresponds with the PTS1 consensus sequence, may function as an internal PTS1. Analysis of the binding of Cat1 to PTS1 receptor (Pex5p) by the yeast two-hybrid system revealed that Cat1 can bind with the PTS1 receptor (Pex5p), indicating that Cat1 is imported into peroxisomes by the PTS1 system.  相似文献   

2.
Peroxisomes are functionally diverse organelles that are wholly dependent on import of nuclear-encoded proteins. The signals that direct proteins into these organelles are either found at the C-terminus (type 1 peroxisomal targeting signal; PTS1) or N-terminus (type 2 peroxisomal targeting signal; PTS2) of the protein. Based on a limited number of tests in heterologous systems, PTS1 signals appear to be conserved across species. To further test the generality of this conclusion and to establish the extent to which the PTS1 signals can be relied on for biotechnological purposes across species, we tested two PTS1 signals for their ability to target fluorescent proteins in diverse plant species. Transient assays following microprojectile bombardment showed that the six amino acid PTS1 sequence (RAVARL) from spinach glycolate oxidase effectively targets green fluorescent fusion protein to the leaf peroxisomes in all 20 crops tested, including four monocots (sugarcane, wheat, corn and onion) and 16 dicots (carrot, cucumber, broccoli, tomato, lettuce, turnip, radish, cauliflower, cabbage, capsicum, celery, tobacco, petunia, beetroot, eggplant and coriander). Similarly, results indicated that the 10 amino acid PTS1 sequence (IHHPRELSRL) from pumpkin malate synthase effectively targets red fluorescent fusion protein to the leaf peroxisomes in all four crops tested including monocot (sugarcane) and dicot (cabbage, celery and pumpkin) species. These signal sequences should be useful metabolic engineering tools to direct recombinant proteins to the leaf peroxisomes in diverse plant species of biotechnological interest.  相似文献   

3.
Reumann S  Ma C  Lemke S  Babujee L 《Plant physiology》2004,136(1):2587-2608
To identify unknown proteins from plant peroxisomes, the Arabidopsis genome was screened for proteins with putative major or minor peroxisome targeting signals type 1 or 2 (PTS1 or PTS2), as defined previously (Reumann S [2004] Plant Physiol 135: 783-800). About 220 and 60 proteins were identified that carry a putative PTS1 or PTS2, respectively. To further support postulated targeting to peroxisomes, several prediction programs were applied and the putative targeting domains analyzed for properties conserved in peroxisomal proteins and for PTS conservation in homologous plant expressed sequence tags. The majority of proteins with a major PTS and medium to high overall probability of peroxisomal targeting represent novel nonhypothetical proteins and include several enzymes involved in beta-oxidation of unsaturated fatty acids and branched amino acids, and 2-hydroxy acid oxidases with a predicted function in fatty acid alpha-oxidation, as well as NADP-dependent dehydrogenases and reductases. In addition, large protein families with many putative peroxisomal isoforms were recognized, including acyl-activating enzymes, GDSL lipases, and small thioesterases. Several proteins are homologous to prokaryotic enzymes of a novel aerobic hybrid degradation pathway for aromatic compounds and proposed to be involved in peroxisomal biosynthesis of plant hormones like jasmonic acid, auxin, and salicylic acid. Putative regulatory proteins of plant peroxisomes include protein kinases, small heat shock proteins, and proteases. The information on subcellular targeting prediction, homology, and in silico expression analysis for these Arabidopsis proteins has been compiled in the public database AraPerox to accelerate discovery and experimental investigation of novel metabolic and regulatory pathways of plant peroxisomes.  相似文献   

4.
Johnson TL  Olsen LJ 《Plant physiology》2003,133(4):1991-1999
Most peroxisomal matrix proteins possess a carboxy-terminal tripeptide targeting signal, termed peroxisomal targeting signal type 1 (PTS1), and follow a relatively well-characterized pathway of import into the organelle. The peroxisomal targeting signal type 2 (PTS2) pathway of peroxisomal matrix protein import is less well understood. In this study, we investigated the mechanisms of PTS2 protein binding and import using an optimized in vitro assay to reconstitute the transport events. The import of the PTS2 protein thiolase differed from PTS1 protein import in several ways. Thiolase import was slower than typical PTS1 protein import. Competition experiments with both PTS1 and PTS2 proteins revealed that PTS2 protein import was inhibited by addition of excess PTS2 protein, but it was enhanced by the addition of PTS1 proteins. Mature thiolase alone, lacking the PTS2 signal, was not imported into peroxisomes, confirming that the PTS2 signal is necessary for thiolase import. In competition experiments, mature thiolase did not affect the import of a PTS1 protein, but it did decrease the amount of radiolabeled full-length thiolase that was imported. This is consistent with a mechanism by which the mature protein competes with the full-length thiolase during assembly of an import complex at the surface of the membrane. Finally, the addition of zinc to PTS2 protein imports increased the level of thiolase bound and imported into the organelles.  相似文献   

5.
Peroxisomes were visualized in living cells of various tissues in transgenic Arabidopsis by green fluorescent protein (GFP) through the addition of the peroxisomal targeting signal 1 (PTS1) or PTS2. The observation using confocal laser scanning microscopy revealed that the GFP fluorescence signals were detected as spherical spots in all cells of two kinds of transgenic plants. Immunoelectron microscopic analysis using antibodies against the peroxisomal marker protein, catalase, showed the presence of GFP in peroxisomes, confirming that GFP was correctly transported into peroxisomes by PTS1 or PTS2 pathways. It has been also revealed that peroxisomes are motile organelles whose movement might be caused by cytoplasmic flow. The movement of peroxisomes was more prominent in root cells than that in leaves, and divided into two categories: a relatively slow, random, vibrational movement and a rapid movement. Treatment with anti-actin and anti-tubulin drugs revealed that actin filaments involve in the rapid movement of peroxisomes. Moreover, abnormal large peroxisomes are present as clusters at the onset of germination, and these clusters disappear in a few days. Interestingly, tubular peroxisomes were also observed in the hypocotyl. These findings indicate that the shape, size, number and movement of peroxisomes in living cells are dynamic and changeable rather than uniform.  相似文献   

6.
Peroxisomes are metabolically diverse organelles with essential roles in plant development. The major protein constituents of plant peroxisomes are well characterized, whereas only a few low-abundance and regulatory proteins have been reported to date. We performed an in-depth proteome analysis of Arabidopsis (Arabidopsis thaliana) leaf peroxisomes using one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry. We detected 65 established plant peroxisomal proteins, 30 proteins whose association with Arabidopsis peroxisomes had been previously demonstrated only by proteomic data, and 55 putative novel proteins of peroxisomes. We subsequently tested the subcellular targeting of yellow fluorescent protein fusions for selected proteins and confirmed the peroxisomal localization for 12 proteins containing predicted peroxisome targeting signals type 1 or 2 (PTS1/2), three proteins carrying PTS-related peptides, and four proteins that lack conventional targeting signals. We thereby established the tripeptides SLM> and SKV> (where > indicates the stop codon) as new PTS1s and the nonapeptide RVx5HF as a putative new PTS2. The 19 peroxisomal proteins conclusively identified from this study potentially carry out novel metabolic and regulatory functions of peroxisomes. Thus, this study represents an important step toward defining the complete plant peroxisomal proteome.  相似文献   

7.
Peroxisome biogenesis requires various complex processes including organelle division, enlargement and protein transport. We have been studying a number of Arabidopsis apm mutants that display aberrant peroxisome morphology. Two of these mutants, apm2 and apm4, showed green fluorescent protein fluorescence in the cytosol as well as in peroxisomes, indicating a decrease of efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. Interestingly, both mutants were defective in PTS2-dependent protein transport. Plant growth was more inhibited in apm4 than apm2 mutants, apparently because protein transport was more severely decreased in apm4 than in apm2 mutants. APM2 and APM4 were found to encode proteins homologous to the peroxins PEX13 and PEX12, respectively, which are thought to be involved in transporting matrix proteins into peroxisomes in yeasts and mammals. We show that APM2/PEX13 and APM4/PEX12 are localized on peroxisomal membranes, and that APM2/PEX13 interacts with PEX7, a cytosolic PTS2 receptor. Additionally, a PTS1 receptor, PEX5, was found to stall on peroxisomal membranes in both mutants, suggesting that PEX12 and PEX13 are components that are involved in protein transport on peroxisomal membranes in higher plants. Proteins homologous to PEX12 and PEX13 have previously been found in Arabidopsis but it is not known whether they are involved in protein transport to peroxisomes. Our findings reveal that APM2/PEX13 and APM4/PEX12 are responsible for matrix protein import to peroxisomes in planta.  相似文献   

8.
In this study we cloned CTA1, the gene encoding peroxisomal catalase, from the methylotrophic yeast Candida boidinii and studied targeting of the gene product, Cta1p, into peroxisomes by using green fluorescent protein (GFP) fusion proteins. A strain from which CTA1 was deleted (cta1Delta strain) showed marked growth inhibition when it was grown on the peroxisome-inducing carbon sources methanol, oleate, and D-alanine, indicating that peroxisomal catalase plays an important nonspecific role in peroxisomal metabolism. Cta1p carries a peroxisomal targeting signal type 1 (PTS1) motif, -NKF, in its carboxyl terminus. Using GFP fusion proteins, we found that (i) Cta1p is transported to peroxisomes via its PTS1 motif, -NKF; (ii) peroxisomal localization is necessary for Cta1p to function physiologically; and (iii) Cta1p is bimodally distributed between the cytosol and peroxisomes in methanol-grown cells but is localized exclusively in peroxisomes in oleate- and D-alanine-grown cells. In contrast, the fusion protein GFP-AKL (GFP fused to another typical PTS1 sequence, -AKL), in the context of CbPmp20 and D-amino acid oxidase, was found to localize exclusively in peroxisomes. A yeast two-hybrid system analysis suggested that the low transport efficiency of the -NKF sequence is due to a level of interaction between the -NKF sequence and the PTS1 receptor that is lower than the level of interaction with the AKL sequence. Furthermore, GFP-Cta1pDeltankf coexpressed with Cta1p was successfully localized in peroxisomes, suggesting that the oligomer was formed prior to peroxisome import and that it is not necessary for all four subunits to possess a PTS motif. Since the main physiological function of catalase is degradation of H2O2, suboptimal efficiency of catalase import may confer an evolutionary advantage. We suggest that the PTS1 sequence, which is found in peroxisomal catalases, has evolved in such a way as to give a higher priority for peroxisomal transport to peroxisomal enzymes other than to catalases (e.g., oxidases), which require a higher level of peroxisomal transport efficiency.  相似文献   

9.
Most peroxisomal enzymes are targeted to peroxisomes by virtue of a type-1 peroxisomal targeting signal (PTS1) at their extreme C terminus. PEX5 binds the PTS1 through its C-terminal 40-kDa tetratricopeptide repeat domain and is essential for import of PTS1-contining proteins into peroxisomes. Here we examined the PTS1-binding activity of purified, recombinant, full-length PEX5 using a fluorescence anisotropy-based assay. Like its C-terminal fragment, full-length tetrameric PEX5 exhibits high intrinsic affinity for the PTS1, with a K(d) of 35 nm for the peptide lissamine-Tyr-Gln-Ser-Lys-Leu-COO(-). The specificity of this interaction was demonstrated by the fact that PEX5 had no detectable affinity for a peptide in which the Lys was replaced with Glu, a substitution that inactivates PTS1 signals in vivo. Hsp70 has been found to regulate the affinity of PEX5 for a PTS1-containing protein, but we found that the kinetics of PEX5-PTS1 binding was unaffected by Hsp70, Hsp70 plus ATP, or Hsp70 plus ADP. In addition, we found that another protein known to interact with the PTS1-binding domain of PEX5, the PEX12 zinc RING domain, also had no discernable effect on PEX5-PTS1 binding kinetics. Taken together, these results suggest that the initial step in peroxisomal protein import, the recognition of enzymes by PEX5, is a relatively simple process and that Hsp70 most probably stimulates this process by catalyzing the folding of newly synthesized peroxisomal enzymes and/or enhancing the accessibility of their PTS1.  相似文献   

10.
Most newly synthesized peroxisomal proteins are imported in a receptor-mediated fashion, depending on the interaction of a peroxisomal targeting signal (PTS) with its cognate targeting receptor Pex5 or Pex7 located in the cytoplasm. Apart from this classic mechanism, heterologous protein complexes that have been proposed more than a decade ago are also to be imported into peroxisomes. However, it remains still unclear if this so-called piggyback import is of physiological relevance in mammals. Here, we show that Cu/Zn superoxide dismutase 1 (SOD1), an enzyme without an endogenous PTS, is targeted to peroxisomes using its physiological interaction partner 'copper chaperone of SOD1' (CCS) as a shuttle. Both proteins have been identified as peroxisomal constituents by 2D-liquid chromatography mass spectrometry of isolated rat liver peroxisomes. Yet, while a major fraction of CCS was imported into peroxisomes in a PTS1-dependent fashion in CHO cells, overexpressed SOD1 remained in the cytoplasm. However, increasing the concentrations of both CCS and SOD1 led to an enrichment of SOD1 in peroxisomes. In contrast, CCS-mediated SOD1 import into peroxisomes was abolished by deletion of the SOD domain of CCS, which is required for heterodimer formation. SOD1/CCS co-import is the first demonstration of a physiologically relevant piggyback import into mammalian peroxisomes.  相似文献   

11.
Saccharomyces cerevisiae delta3,delta2-enoyl-CoA isomerase (Eci1p), encoded by ECI1, is an essential enzyme for the betaoxidation of unsaturated fatty acids. It has been reported, as well as confirmed in this study, to be a peroxisomal protein. Unlike many other peroxisomal proteins, Ecilp possesses both a peroxisome targeting signal type 1 (PTS1)-like signal at its carboxy-terminus (-HRL) and a PTS2-like signal at its amino-terminus (RIEGPFFIIHL). We have found that peroxisomal targeting of a fusion protein consisting of Eci1p in front of green fluorescent protein (GFP) is not dependent on Pex7p (the PTS2 receptor), ruling out a PTS2 mechanism, but is dependent on Pex5p (the PTS1 receptor). This Pex5p-dependence was unexpected, since the putative PTS1 of Ecilp is not at the C-terminus of the fusion protein; indeed, deletion of this signal (-HRL-) from the fusion did not affect the Pex5p-dependent targeting. Consistent with this, Pex5p interacted in two-hybrid assays with both Eci1p and Eci1PdeltaHRL. Ecilp-GFP targeting and Eci1pdeltaHRL interaction were abolished by replacement of Pex5p with Pex5p(N495K), a point-mutated Pex5p that specifically abolishes the PTS1 protein import pathway. Thus, Eci1p peroxisomal targeting does require the Pex5p-dependent PTS1 pathway, but does not require a PTS1 of its own. By disruption of ECI1 and DCI1, we found that Dci1p, a peroxisomal PTS1 protein that shares 50% identity with Eci1p, is necessary for Eci1p-GFP targeting. This suggests that the Pex5p-dependent import of Eci1p-GFP is due to interaction and co-import with Dci1p. Despite the dispensability of the C-terminal HRL for import in wild-type cells, we have also shown that this tripeptide can function as a PTS1, albeit rather weakly, and is essential for targeting in the absence of Dci1p. Thus, Eci1p can be targeted to peroxisomes by its own PTS1 or as a hetero-oligomer with Dcilp. These data demonstrate a novel, redundant targeting pathway for Eci1p.  相似文献   

12.
We have established a protocol for the isolation of highly purified peroxisomes from mature Arabidopsis thaliana leaves and analyzed the proteome by complementary gel-based and gel-free approaches. Seventy-eight nonredundant proteins were identified, of which 42 novel proteins had previously not been associated with plant peroxisomes. Seventeen novel proteins carried predicted peroxisomal targeting signals (PTS) type 1 or type 2; 11 proteins contained PTS-related peptides. Peroxisome targeting was supported for many novel proteins by in silico analyses and confirmed for 11 representative full-length fusion proteins by fluorescence microscopy. The targeting function of predicted and unpredicted signals was investigated and SSL>, SSI>, and ASL> were established as novel functional PTS1 peptides. In contrast with the generally accepted confinement of PTS2 peptides to the N-terminal domain, the bifunctional transthyretin-like protein was demonstrated to carry internally a functional PTS2. The novel enzymes include numerous enoyl-CoA hydratases, short-chain dehydrogenases, and several enzymes involved in NADP and glutathione metabolism. Seven proteins, including beta-glucosidases and myrosinases, support the currently emerging evidence for an important role of leaf peroxisomes in defense against pathogens and herbivores. The data provide new insights into the biology of plant peroxisomes and improve the prediction accuracy of peroxisome-targeted proteins from genome sequences.  相似文献   

13.
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.  相似文献   

14.
Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1.  相似文献   

15.
We previously described the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targeting signals, PTS1 and PTS2, have been identified that are sufficient to direct proteins to the peroxisomal matrix. We show that the pas8 mutant is deficient in the import of proteins with the PTS1, but not the PTS2, targeting signal. This is the same import deficiency as that found in cells from patients with the lethal human peroxisomal disorder Zellweger syndrome. Cloning and sequencing of the PAS8 gene reveals that it is a novel member of the tetratricopeptide repeat gene family. Antibodies raised against bacterially expressed PAS8 are used to show that PAS8 is a peroxisomal, membrane-associated protein. Also, we have found that in vitro translated PAS8 protein is capable of binding the PTS1 targeting signal specifically, raising the possibility that PAS8 is a PTS1 receptor.  相似文献   

16.
Current methods to detect protein-protein interactions are either laborious to implement or not adaptable for mammalian systems or in vitro methods. By adding a peroxisomal targeting signal (PTS) onto one protein, binding partners lacking a targeting signal were co-transported into the peroxisomes in a "piggy-back" fashion, as visualized by confocal and electron microscopy. A fragment of colicin E2 and its tightly interacting immunity protein, ImmE2, were both expressed in the cytosol. When either one contained a PTS tag, both proteins were co-localized in the peroxisomes. The cytokine-independent survival kinase (CISK) containing a PTS tag was not efficiently targeted to the peroxisomes unless the Phox homology (PX) domain, attaching the protein to endosomal membranes, was removed. However, PTS-tagged CISK with deleted PX domain was able to direct 3-phosphoinositide-dependent protein kinase-1 (PDK-1) into the peroxisomes. This demonstrates that the two proteins interact in vivo. Mutating Ser486, which is phosphorylated in activated CISK, to Ala prevented the interaction, indicating that CISK and PDK-1 interact in a phosphorylation-dependent manner. The method therefore allows assessment of protein-protein interactions that depend on post-translational modifications that are cell-specific or dependent on the physiological state of the cell.  相似文献   

17.
Peroxisomes in higher plant cells are known to differentiate in function depending on the cell type. Because of the functional differentiation, plant peroxisomes are subdivided into several classes, such as glyoxysomes and leaf peroxisomes. These peroxisomal functions are maintained by import of newly synthesized proteins containing one of two peroxisomal targeting signals known as PTS1 and PTS2. These targeting signals are known to be recognized by the cytosolic receptors, Pex5p and Pex7p, respectively. To demonstrate the contribution of Pex5p and Pex7p to the maintenance of peroxisomal functions in plants, double-stranded RNA constructs were introduced into the genome of Arabidopsis thaliana. Expression of the PEX5 and PEX7 genes was efficiently reduced by the double-stranded RNA-mediated interference in the transgenic Arabidopsis. The Pex5p-deficient Arabidopsis showed reduced activities for both glyoxysomal and leaf peroxisomal functions. An identical phenotype was observed in a transgenic Arabidopsis overexpressing functionally defective Pex5p. In contrast, the Pex7p-deficient Arabidopsis showed reduced activity for glyoxysomal function but not for leaf peroxisomal function. Analyses of peroxisomal protein import in the transgenic Arabidopsis revealed that Pex5p was involved in import of both PTS1-containing proteins and PTS2-containing proteins, whereas Pex7p contributed to the import of only PTS2-containing proteins. Overall, the results indicated that Pex5p and Pex7p play different roles in the maintenance of glyoxysomal and leaf peroxisomal functions in plants.  相似文献   

18.
We previously isolated an Arabidopsis: peroxisome-deficient ped2 mutant by its resistance to 2,4-dichlorophenoxybutyric acid. Here, we describe the isolation of a gene responsible for this deficiency, called the PED2 gene, by positional cloning and confirmed its identity by complementation analysis. The amino acid sequence of the predicted protein product is similar to that of human Pex14p, which is a key component of the peroxisomal protein import machinery. Therefore, we decided to call it AT:Pex14p. Analyses of the ped2 mutant revealed that AT:Pex14p controls intracellular transport of both peroxisome targeting signal (PTS)1- and PTS2-containing proteins into three different types of peroxisomes, namely glyoxysomes, leaf peroxisomes and unspecialized peroxisomes. Mutation in the PED2 gene results in reduction of enzymes in all of these functionally differentiated peroxisomes. The reduction in these enzymes induces pleiotropic defects, such as fatty acid degradation, photorespiration and the morphology of peroxisomes. These data suggest that the AT:Pex14p has a common role in maintaining physiological functions of each of these three kinds of plant peroxisomes by determining peroxisomal protein targeting.  相似文献   

19.
Pex13p is the putative docking protein for peroxisomal targeting signal 1 (PTS1)-dependent protein import into peroxisomes. Pex14p interacts with both the PTS1- and PTS2-receptor and may represent the point of convergence of the PTS1- and PTS2-dependent protein import pathways. We report the involvement of Pex13p in peroxisomal import of PTS2-containing proteins. Like Pex14p, Pex13p not only interacts with the PTS1-receptor Pex5p, but also with the PTS2-receptor Pex7p; however, this association may be direct or indirect. In support of distinct peroxisomal binding sites for Pex7p, the Pex7p/Pex13p and Pex7p/ Pex14p complexes can form independently. Genetic evidence for the interaction of Pex7p and Pex13p is provided by the observation that overexpression of Pex13p suppresses a loss of function mutant of Pex7p. Accordingly, we conclude that Pex7p and Pex13p functionally interact during PTS2-dependent protein import into peroxisomes. NH2-terminal regions of Pex13p are required for its interaction with the PTS2-receptor while the COOH-terminal SH3 domain alone is sufficient to mediate its interaction with the PTS1-receptor. Reinvestigation of the topology revealed both termini of Pex13p to be oriented towards the cytosol. We also found Pex13p to be required for peroxisomal association of Pex14p, yet the SH3 domain of Pex13p may not provide the only binding site for Pex14p at the peroxisomal membrane.  相似文献   

20.
PTS1-independent sorting of peroxisomal matrix proteins by Pex5p   总被引:1,自引:0,他引:1  
Most peroxisomal matrix proteins contain a peroxisomal targeting signal 1 (PTS1) for sorting to the correct organelle. This signal is located at the extreme C-terminus and generally consists of only three amino acids. The PTS1 is recognized by the receptor protein Pex5p. Several examples have been reported of peroxisomal matrix proteins that are sorted to peroxisomes via Pex5p, but lack a typical PTS1 tripeptide. In this contribution we present an overview of these so-called non-PTS1 proteins and discuss the current knowledge of the molecular mechanisms involved in their sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号