首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Na+,K+-ATPase, the enzymatic moiety that operates as the electrogenic sodium-potassium pump of the cell plasma membrane, is inhibited by cardiac glycosides, and this specific interaction of a drug with an enzyme has been considered to be responsible for digitalis-induced vascular smooth muscle contraction. Although studies aimed at localization, isolation, and measurement of the Na+,K+-ATPase activity (or Na+, K- pump activity) indicate its presence in vascular smooth muscle sarcolemma, its characterization as the putative vasopressor receptor site for cardiac glycosides has depended on pharmacological studies of vascular response in vivo and on isolated artery contractile responses in vitro. More recently, radioligand-binding studies using [3H]ouabain have aided in the characterization of drug-enzyme interaction. Such studies indicate that in canine superior mesenteric artery (SMA), Na+,K+-ATPase is the only specific site of interaction of ouabain with resultant inhibition of the enzyme. The characteristics of [3H]ouabain binding to this site are similar to those of purified or partially purified Na+,K+-ATPase of other tissues, which suggests that if Na+,K+-ATPase inhibition is causally related to digitalis-mediated effects on vascular smooth muscle contraction, then therapeutic concentrations of cardiac glycosides could act to cause SMA vasoconstriction. The additional finding from radioligand-binding studies that Na+,K+-ATPase exists in much smaller quantities (density of sites per cell) in SMA than in either heart or kidney may have implications concerning its physiological, biochemical or pharmacological role in modulating vascular muscle tone.  相似文献   

2.
Atrial cardiocytes contain specific atrial granules ( SAGs ) which are the storage site of atrial natriuretic factor (ANF). The purpose of the present study was to determine whether ANF produces natriuresis by inhibiting Na+-K+ pump activity and whether this factor is similar to the humoral sodium transport inhibiting factor ( HSTIF ) previously demonstrated in acutely volume expanded animals and humans as well as in experimental and human essential hypertension. Our results indicate that, in contrast to the HSTIF , ANF does not inhibit membrane Na+,K+-ATPase, vascular smooth muscle cell Na+-K+ pump activity, or sodium transport in the toad bladder. Intravenous infusion of ANF in the bilaterally nephrectomized, hexamethonium-treated rat produces only a small transient pressor response, probably due to potentiation of endogenous norepinephrine. These findings strongly suggest that the ANF is not the same as the HSTIF detected on acute volume expansion and in some forms of hypertension. They also suggest that the diuretic and natriuretic effects of ANF are due to mechanism(s) other than blood pressure elevation and inhibition of Na+-K+ pump activity.  相似文献   

3.
F J Haddy  M B Pamnani 《Life sciences》1987,41(25):2685-2696
Anatagonists to angiotensin, catecholamines, aldosterone, and vasopressin have long been used to help determine agonist roles in hypertension. We here call attention to a possible extension of this approach to detect, evaluate, and treat vascular sodium transport defects in hypertension. Two basic types of transport defects have been identified in the blood vessels of hypertensive animals, increased sodium permeability and decreased sodium pump activity. Intravenous injection of 6-iodo-amiloride, a sodium channel blocker and vasodilator, produces an immediate and sustained decrease in blood pressure in two genetic models of hypertension characterized by increased permeability of the vascular smooth muscle cell membrane to sodium (Okamoto spontaneously hypertensive rat, Dahl salt sensitive rat), whereas it produces only a transient fall in arterial pressure in two renal models of hypertension having normal sodium permeability in vascular smooth muscle cells (reduced renal mass-saline rat, one-kidney, one clip rat). Canrenone, a metabolic product of spironolactone which can compete with oubain for binding to Na+,K+-ATPase at the digitalis receptor site, decreases blood pressure in a low renin, volume expanded model of hypertension which has been shown to have depressed sodium pump activity in arteries and increased sodium pump inhibitor in plasma (reduced renal mass-saline rat) but has no effect on blood pressure in a genetic model of hypertension which has been shown to have increased sodium pump activity secondary to increased sodium permeability (spontaneously hypertensive rat). Thus, a sodium channel blocker and a competitor to ouabain binding can detect and determine the functional significance of sodium transport defects in the blood vessels of intact hypertensive animals. Studies in red and white blood cells suggest that similar defects may exist in the blood vessels of hypertensive humans. Thus, this approach, probing for vascular transport defects in the intact animal, may ultimately also be useful in the clinical setting.  相似文献   

4.
The effect of physiological and pharmacological concentrations of aldosterone on Na+ efflux catalyzed by the human erythrocyte Na+,K+-ATPase in vitro were studied. Aldosterone had no significant effect on ouabain-sensitive Na+ efflux from fresh erythrocytes. In addition, aldosterone did not alter Na+ transport activity of stimulated Na+,K+-ATPase of Na+ loaded erythrocytes. Finally, Na+ efflux from Na+ loaded erythrocytes was not changed by preincubation of the cells with aldosterone. It is concluded that aldosterone in vitro does not modify pump activity of the human erythrocyte Na+, K+-ATPase.  相似文献   

5.
By regulating transmembrane Na+ and K+ concentrations and membrane potential, the Na+,K(+)-ATPase plays an important role in regulating cardiac, skeletal, and smooth muscle function. A high degree of amino acid sequence and structural identity characterizes the three Mr 100,000 Na+,K(+)-ATPase alpha subunit isoforms expressed in cardiac and skeletal muscle. Strikingly, vascular smooth muscle utilizes alternative RNA processing of the alpha-1 gene to express a structurally distinct Mr approximately 65,000 isoform, alpha 1-T (truncated). Analysis of both its mRNA and protein structure reveals that alpha-1-T represents a major, evolutionarily conserved, truncated Na+,K(+)-ATPase isoform expressed in vascular smooth muscle. This demonstrates an unexpected complexity in the regulation of vascular smooth muscle Na+,K(+)-ATPase gene expression and suggests that a structurally novel, truncated alpha subunit may play a role in vascular smooth muscle active ion transport.  相似文献   

6.
Stimulation by aldosterone of sodium reabsorption can be reproduced on a cell line, A6, derived from the renal tissue of Xenopus laevis. These cells organize themselves as a polarized epithelium carrying out unidirectional sodium transport, reflected by the short-circuit current (Isc). Isc response to aldosterone starts to be apparent after a latency period of 2-3 h; the full hormonal effect takes much longer. On the other hand, (Na+ + K+)-ATPase activity and density in ouabain binding sites did not increase before several hours of treatment. At that stage, while Isc more than trebled, Na+ pump activity and density went up by less than 50%. A significant influence of aldosterone on the way the Na+ pump operates is considered unlikely, since cell interaction with ouabain remained unchanged (Kd approximately 18 nM). Furthermore, the close correspondence of hormonal effect, in relative terms, on (Na+ + K+)-ATPase activity vs density, argues against a significant degree of recruitment of spare pump units. Thus aldosterone effect on Na+ pump probably results from increased biosynthesis of the enzyme. The aldosterone dependent Na+ pump stimulation is apparently unrelated to sodium available for transport. The hormone seems to act on Na+ pump directly.  相似文献   

7.
MDCK kidney epithelial cell cultures exposed to the differentiation inducer hexamethylene bisacetamide (HMBA) for 24 hours exhibited a 50% decrease in transport activity per (Na+,K+)-ATPase molecule (turnover number) but an unchanged number of pump sites (Kennedy and Lever, 1984). Inhibition of protein synthesis by either 10 microM cycloheximide or 2 microM emetine blocked the inhibitory effects of HMBA on Na+/K+ pump efficiency assessed by measurements of [3H]-ouabain binding to intact cells, (Na+,K+) ATPase activity of detergent-activated cell extracts, and ouabain-sensitive Rb+ uptake. In the absence of inducer treatment, inhibition of protein synthesis increased Na+/K+ pump turnover number by twofold while maintaining Na+/K+ pump activity per cell at a constant level. Intracellular Na+ levels were decreased after cycloheximide treatment; therefore, pump stimulation was not due to substrate effects. Furthermore, cycloheximide effects of Rb+ uptake could be dissociated from effects on tight junctions. These observations suggest that the transport activity of the (Na+,K+) ATPase is tightly regulated by factors dependent on protein synthesis.  相似文献   

8.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

9.
Endurance exercise modifies regulatory systems that control skeletal muscle Na+ and K+ fluxes, in particular Na+-K+-ATPase-mediated transport of these ions. Na+ and K+ ion channels also play important roles in the regulation of ionic movements, specifically mediating Na+ influx and K+ efflux that occur during contractions resulting from action potential depolarization and repolarization. Whether exercise alters skeletal muscle electrophysiological properties controlled by these ion channels is unclear. The present study tested the hypothesis that endurance exercise modifies diaphragm action potential properties. Exercised rats spent 8 wk with free access to running wheels, and they were compared with sedentary rats living in conventional rodent housing. Diaphragm muscle was subsequently removed under anesthesia and studied in vitro. Resting membrane potential was not affected by endurance exercise. Muscle from exercised rats had a slower rate of action potential repolarization than that of sedentary animals (P = 0.0098), whereas rate of depolarization was similar in the two groups. The K+ channel blocker 3,4-diaminopyridine slowed action potential repolarization and increased action potential area of both exercised and sedentary muscle. However, these effects were significantly smaller in diaphragm from exercised than sedentary rats. These data indicate that voluntary running slows diaphragm action potential repolarization, most likely by modulating K+ channel number or function.  相似文献   

10.
Transepithelial Na+ reabsorption across tight epithelia is regulated by aldosterone. Mineralocorticoids modulate the expression of a number of proteins. Na+,K+-ATPase has been identified as an aldosterone-induced protein (Geering, K., M. Girardet, C. Bron, J. P. Kraehenbuhl, and B. C. Rossier, 1982, J. Biol. Chem., 257:10338-10343). Using A6 cells (kidney of Xenopus laevis) grown on filters we demonstrated by Northern blot analysis that the induction of Na+,K+-ATPase was mainly mediated by a two- to fourfold accumulation of both alpha- and beta-subunit mRNAs. The specific competitor spironolactone decreased basal Na+ transport, Na+,K+-ATPase mRNA, and the relative rate of protein biosynthesis, and it blocked the response to aldosterone. Cycloheximide inhibited the aldosterone-dependent sodium transport but did not significantly affect the cytoplasmic accumulation of Na+,K+-ATPase mRNA induced by aldosterone.  相似文献   

11.
Hormonal control of the Na+,K+-pump modulates membrane potential in mammalian cells, which in turn drives ion coupled transport processes and maintains cell volume and osmotic balance. Na+,K+-pump regulation is particularly important in the musculoskeletal, cardiovascular and renal systems. Decreased Na+,K+-pump activity can result in a rise in intracellular Na+ concentrations which in turn increase Na+/Ca2+ exchange, thereby raising intracellular Ca2+ levels. In cardiac and skeletal muscle, this could interfere with normal contractile activity. Similarly, in vascular smooth muscle the result would be resistance to vasodilation. Inhibition of the Na+,K+-pump can also reduce the driving force for renal tubular Na+ reabsorption, elevating Na+ excretion. By virtue of decreasing the membrane potential, thus allowing more efficient depolarization of nerve endings and by increasing intracellular Ca2+, inhibition of the Na+,K+-pump can increase nervous tone. The ability of insulin to stimulate the Na+,K+-pump in various cells and tissues, and the physiological significance thereof, have been well documented. Much less is known about the effect of leptin on the Na+,K+-pump. We have shown that leptin inhibits Na+,K+-pump function in 3T3-L1 fibroblasts. Defects in insulin and leptin action are associated with diabetes and obesity, respectively, both of which are commonly associated with cardiovascular complications. In this review we discuss the mechanisms of Na+,K+-pump regulation by insulin and leptin and highlight how, when they fail, they may contribute to the pathophysiology of hypertension associated with diabetes and obesity.  相似文献   

12.
Sodium pump hyperpolarization-relaxation in rat caudal artery   总被引:2,自引:0,他引:2  
Electrogenic ion transport contributes vitally to the Em in vascular muscle and thus is an important influence on contraction and relaxation. Agents that act on membrane ion transport will cause depolarization or hyperpolarization of sufficient magnitude to cause contraction or relaxation, respectively. In the caudal artery of the rat, the principal ion involved appears to be Na+. The transport process appears to be the Na+, K+-ATPase, which is ouabain sensitive, rather than other possible candidates such as the Na+-Ca2+ countertransport mechanism. The hyperpolarization and parallel relaxation found in caudal artery on return to K+ provide unequivocal evidence for an electrogenic Na+ pump. In contrast, the lack of a contraction on transition to O Na+ suggests that the caudal artery does not show an Na+-K+ countertransport system. Although other ion transport systems might be established later for caudal artery and other kinds of vascular muscle, it now appears that the electrogenic Na+ pump is the main ion transport system controlling contraction through a continuous contribution to Em.  相似文献   

13.
Long term elevation of the intracellular Na+/K+ ratio inhibits macromolecule synthesis and proliferation in the majority of cell types studied so far, including vascular smooth muscle cells (VSMC). We report here that inhibition of the Na+,K+ pump in VSMC by ouabain or a 1-h preincubation in K+-depleted medium attenuated apoptosis triggered by serum withdrawal, staurosporine, or okadaic acid. In the absence of ouabain, both DNA degradation and Caspase-3 activation in VSMC undergoing apoptosis were insensitive to modification of the extracellular Na+/K+ ratio as well as to hyperosmotic cell shrinkage. In contrast, protection of VSMC from apoptosis by ouabain was abolished under equimolar substitution of Na+o with K+o, showing that the antiapoptotic action of Na+,K+ pump inhibition was caused by inversion of the intracellular Na+/K+ ratio. Unlike VSMC, the same level of increment of the [Na+]i/[K+]i ratio caused by a 2-h preincubation of Jurkat cells with ouabain did not affect chromatin cleavage and Caspase-3 activity triggered by treatment with Fas ligand, staurosporine, or hyperosmotic shrinkage. Thus, our results show for the first time that similar to cell proliferation, maintenance of a physiologically low intracellular Na+/K+ ratio is required for progression of VSMC apoptosis.  相似文献   

14.
An electrogenic sodium-potassium pump appears to contribute materially to the steady-state potential and to certain of the transient potential responses of vascular smooth muscle. Since changes in cell potential in turn can lead to changes in contractile state, the pump is implicated in some of the constriction-dilation responses of blood vessels. The vasodilator action of potassium is explainable, for instance, through an effect on cell potential if (and only if) an electrogenic pump is assumed to be extruding sodium at a faster rate than it takes up potassium. This is supported by the observation that ouabain, an inhibitor of Na,K-ATPase activity, will eliminate or reverse the vascular effect of potassium. Furthermore, when the in vivo and in vitro effects on vascular smooth muscle of altered extracellular potassium concentration are compared to calculated cell potentials based on a model that includes an electrogenic pump, the experimental findings are shown to be logical and predictable.  相似文献   

15.
Ouabain is a well known inhibitor of the Na+ pump in all mammalian cells. We have demonstrated that ouabain at concentrations below those which inhibit the pump, i.e. 0.1 nM and 1.0 nM, induce proliferation of saphenous vein smooth muscle cells as measured by bromodeoxyuridine (BrdU) uptake. Ouabain at these low concentrations also activated MAPK. Proliferating concentrations of the drug did not increase levels of Ca(i)2+, suggesting no effect of this ion in the process. In addition, incubation of the cells in low levels of K+, which has been shown to inhibit the pump, had no effect on proliferation. These data show that low concentrations of ouabain that do not inhibit the Na+ pump can activate proliferation of vascular smooth muscle cells, suggesting that the pump complex may act as a transducing receptor.  相似文献   

16.
Rb+ uptake, intracellular Na+ and K+ levels, and the tissue-medium distribution of the nonmetabolized glucose analog, 3-O-methyl-D-glucose (3-MG) were measured in rat diaphragms incubated with chlormadinone acetate, 6-chloro-4,6-pregnadien-17-ol-3,20-dione 17-acetate (CMA), in the presence and absence of ouabain. CMA in concentrations of 5 X 10(-7) M or higher significantly depressed 86Rb uptake, and promoted an increase in internal Na+ and a decrease in internal K+, indicating inhibition of the sodium pump. Sugar transport in resting muscle parallels the changes in internal Na+ levels and is an additional indicator of sodium pump activity. Equilibration of 3-MG between tissue and medium was accelerated by CMA, in parallel to the rise in internal Na+ level. Effects of CMA on Na+ levels and sugar transport, but not on Rb+ uptake, were additive to those of various concentrations of ouabain, suggesting interaction with sites not affected by ouabain. These results on diaphragm muscle confirm our previous studies on isolated cardiac muscle preparations showing that CMA, added to the aqueous bathing medium, inhibits the sodium pump in intact muscle tissues.  相似文献   

17.
Influence of Na+,K+,2Cl(-)-cotransport and chloride permeability of the cell membrane on electrically-induced action potential and contraction of smooth muscle cells from guinea pig ureter was examined with the methods of the double sucrose gap junction. Mesatone (10 microM) and histamine (10 microM) induced prolongation of the action potential and elevation of smooth muscle cell contraction, whereas hyperosmic medium (+150 mM sucrose), and recovery of solution osmolality in hyposmic condition (70 mM NaCl) after a single contraction. Inhibitor Na+,K+,2Cl(-)-cotransport bumetanide (10 microM) and chloride permeability blockers niflumic acid (10-100 microM) and SITS (10-500 microM) attenuated stimulating effects of mesatone, histamine and hyperosmic medium. In opposite to adenylate cyclase activation with forskolin (1 microM), guanylate cyclase activation with sodium nitroprusside (SN, 100 microM) decreased both inhibitory action of bumetanide, niflumic acid and activating effects of mesatone, histamine on action potential and elevation contraction of smooth muscle cells. Influence of forskolin rather and not SN on AP and SMC C was inhibited with tetraethylammonium (5 mM). These results suggest that influence of Na+,K+,2Cl(-)-cotransport on electrical and contractil properties of ureter smooth muscle cells is mediated by stimulation of Ca(2+)-activated chloride permeability of the cell membrane and modulated by intracellular cGMP, but not triggered by Ca2+ release from sarcoplasmic reticulum.  相似文献   

18.
Little is known concerning the effects of Na+-coupled solute transport on (Na+,K+)-ATPase mediated cation pumping in the intact cell. We investigated the effect of amino acid transport and growth factor addition on the short term regulation of (Na+,K+)-ATPase cation transport in HeLa cells. The level of pump activity in the presence of amino acids or growth factors was compared to the level measured in phosphate buffered saline. These rates were further related to the maximal pump capacity, operationally defined as ouabain inhibitable 86Rb+ influx in the presence of 15 microM monensin. Of the growth factors tested, only insulin was found to moderately (22%) increase (Na+,K+)-ATPase cation transport. The major determinant of pump activity was found to be the transport of amino acids. Minimal essential medium (MEM) amino acids increased ouabain inhibitable 86Rb+ influx to a level close to that obtained with monensin, indicating that the (Na+,K+)-ATPase is operating near maximal capacity during amino acid transport. This situation may apply to tissue culture conditions and consequently measurements of (Na+,K+)-ATPase activity in buffer solutions alone may yield little information about cation pumping under culture conditions. This finding applies especially to cells having high rates of amino acid transport. Furthermore, rates of amino acid transport may be directly or indirectly involved in the long-term regulation of the number of (Na+,K+)-ATPase molecules in the plasma membrane.  相似文献   

19.
The role of arterial receptors to mineralocorticoids (MC) and glucocorticoids (GC) in the induction by MC and GC of changes in transmembrane transport of sodium (Na+) and water was investigated. Implantation of Silastic rubber strips impregnated with 11-desoxycorticosterone acetate (DOCA) in rabbits was followed by a marked increase in vascular smooth muscle cell membrane permeability to Na+ and hypertension. Both of these effects were preventable with progesterone, an anti-MC at the steroid-receptor level, implanted in relative excess simultaneously with DOCA, in approximately 50% of the implanted animals. The other 50% were hydroxylating in vivo progesterone to 11-desoxycorticosterone (DOC) efficiently enough not to yield the necessary ratio of progesterone to DOC for the sufficient MC receptor blockage. In vascular smooth muscle cell culture, grown in the presence of steroids, GC but not MC increased intracellular water space. This increase was preventable by a potent synthetic anti-GC,RU 38486, a steroid with high affinity for GC receptors, added to culture medium along with GC. These results provide evidence that both the in vivo effect of MC on Na+ permeability and the induction of hypertension, and the in vitro effect of GC on water transport in cultured vascular smooth muscle cells are elicited through the receptor-mediated molecular mechanism(s) for action of these steroids in the arterial wall.  相似文献   

20.
Since we had shown recently that fatty acyl-CoA derivatives stimulate (Na+ + K+)-ATPase activity at suboptimal ATP concentrations, we used sealed vesicles of beef heart sarcolemma to examine the effects of these compounds on the transport function of the enzyme. The sodium pump was detected in inside-out vesicles as a component of Na+ uptake that was dependent on intravesicular (extracellular) K+ and extravesicular (intracellular) ATP and was sensitive to vanadate and digitoxigenin. The pump flux was stimulated without a lag by palmitoyl-CoA (K0.5 = 3 microM) when ATP concentration was 50 microM, but not when it was 2 mM. Saturating palmitoyl-CoA reduced the K0.5 of ATP for the pump by a factor of 3-6. Raising the intracellular K+ concentration increased the K0.5 of ATP, and this effect of K+ was antagonized by palmitoyl-CoA. At concentrations up to 0.5 mM, palmitoyl-CoA had no effect on ATP-independent (passive) Na+ uptake. All tested long-chain acyl-CoA derivatives had effects similar to that of palmitoyl-CoA; but CoA, acetyl-CoA, and palmitic acid were ineffective. Palmitoyl carnitine and docosahexanoic acid, amphiphilic compounds with inhibitory and biphasic effects on the hydrolytic activity of purified (Na+ + K+)-ATPase, had purely inhibitory effects on the pump at high concentrations that also affected the passive fluxes. The data support the proposition that fatty acyl-CoA derivatives mimic the effect of ATP at a regulatory site and suggest that these intracellular liponucleotides may be involved in the control of the pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号