首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(4):629-631
  相似文献   

2.
Living organisms have some common and unique strategies to response to thermal stress. However, the amount of data on thermal stress response of certain organism is still lacking, especially psychrophilic yeast from the extreme habitat. Therefore, it is not known whether psychrophilic yeast shares the common responses of other organisms when exposed to thermal stresses. In this work, the cold shock and heat shock responses in Antarctic psychrophilic yeast Glaciozyma antarctica PI12 which had an optimal growth temperature of 12 °C were determined. The expression levels of 14 thermal stress-related genes were measured using real-time quantitative PCR (qPCR) when the yeast cells were exposed to cold shock (0 °C), mild cold shock (5 °C), and heat shock (22 °C) conditions. The expression profiles of the 14 genes at these three temperatures varied indicating that these genes had their specific roles to ensure the survival of the yeast. Under cold shock condition, the afp4 and fad genes were over-expressed possibly as a way for the G. antarctica PI12 to avoid ice crystallization in the cell and to maintain the membrane fluidity. Under the heat shock condition, hsp70 was significantly up-regulated possibly to ensure the proteins fold properly. Among the six oxidative stress-related genes, MnSOD and prx were up-regulated under cold shock and heat shock, respectively, possibly to reduce the negative effects caused by oxidative stress. Interestingly, it was found that the trehalase gene, nth1 that plays a role in degrading excess trehalose, was down-regulated under the heat shock condition possibly as an alternative way to accumulate trehalose in the cells to protecting them from being damaged.  相似文献   

3.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells. During various stresses, the yeast Saccharomyces cerevisiae induces glycerol or trehalose synthesis, but the fluctuations in gene expression and intracellular levels of proline in yeast are not yet well understood. We previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. In this study, we examined the relationships between the gene expression profiles and intracellular contents of glycerol, trehalose, and proline under stress conditions. When yeast cells were exposed to 1 M sorbitol stress, the expression of GPD1 encoding glycerol-3-phosphate dehydrogenase is induced, leading to glycerol accumulation. In contrast, in the presence of 9% ethanol, the rapid induction of TPS2 encoding trehalose-6-phosphate phosphatase resulted in trehalose accumulation. We found that intracellular proline levels did not increase immediately after addition of sorbitol or ethanol. However, the expressions of genes involved in proline synthesis and degradation did not change during exposure to these stresses. It appears that the elevated proline levels are due primarily to an increase in proline uptake from a nutrient medium caused by the induction of PUT4. These results suggest that S. cerevisiae cells do not accumulate proline in response to sorbitol or ethanol stress different from other organisms.  相似文献   

4.
Trehalose and glycerol have been implicated as potential stress protectants that accumulate in yeasts during various stress conditions. We investigated the levels of glycerol and trehalose and the expression profiles of genes involved in their metabolism to determine their involvement in the response of Saccharomyces cerevisiae XQ1 to thermal, sorbitol and ethanol stresses. The results showed that the genes involved in the synthesis and degradation of trehalose and glycerol were stress induced, and that trehalose and glycerol were synthesized simultaneously during the initial stages (a sensitive response period) of diverse stress treatments. Trehalose accumulated markedly under heat treatment, but not under sorbitol or ethanol stress, whereas glycerol accumulated strikingly under sorbitol stress conditions. Interestingly, extracellular trehalose seemed to be involved in protecting cells from damage under unfavorable conditions. Moreover, our results suggest that the stress-activated futile ATP cycles of trehalose and glycerol turnover are of general importance during cellular stress adaptation.  相似文献   

5.
6.
7.
8.
Li HW  Zang BS  Deng XW  Wang XP 《Planta》2011,234(5):1007-1018
Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). The genome of rice (Oryza sativa) contains 11 OsTPS genes, and only OsTPS1 shows TPS activity. To demonstrate the physiological function of OsTPS1, we introduced it into rice and found that OsTPS1 overexpression improved the tolerance of rice seedling to cold, high salinity and drought treatments without other significant phenotypic changes. In transgenic lines overexpressing OsTPS1, trehalose and proline concentrations were higher than in the wild type and some stress-related genes were up-regulated, including WSI18, RAB16C, HSP70, and ELIP. These results demonstrate that OsTPS1 may enhance the abiotic stress tolerance of plants by increasing the amount of trehalose and proline, and regulating the expression of stress-related genes. Furthermore, we found that overexpression of some Class II TPSs also enhanced plant tolerance of abiotic stress. This work will help to clarify the role of trehalose metabolism in abiotic stress response in higher plants.  相似文献   

9.
10.
11.
Larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), are frequently exposed to dehydrating conditions on the Antarctic Peninsula. In this study, we examined how rates and levels of dehydration alter heat and cold tolerance and how these relate to levels of trehalose within the insect. When dehydrated, larvae tolerated cold and heat stress more effectively, although resistance to cold was more pronounced than heat resistance. Slow dehydration was more effective than rapid dehydration in increasing temperature tolerance. Severe dehydration (50% reduction in water content) caused a much greater increase in temperature tolerance than did mild dehydration (e.g. 10% water loss). Larvae severely dehydrated at a slow rate (98% RH) were more temperature tolerant than those dehydrated quickly (0 or 75% RH). These results indicate that the slower dehydration rate allows the larvae to more effectively respond to reduced water levels and that physiological adjustments to desiccation provide cross tolerance to cold and heat. Levels of trehalose increased during dehydration and are likely a major factor increasing subsequent cold and heat resistance. This hypothesis was also supported by experimental results showing that injection of trehalose enhanced resistance to temperature stress and dehydration. We conclude that changes in temperature tolerance in B. antarctica are linked to the rate and severity of dehydration and that trehalose elevation is a probable mechanism enhancing this form of cross tolerance.  相似文献   

12.
13.
Saccharomyces cerevisiae cells show under suboptimal growth conditions a complex response that leads to the acquisition of tolerance to different types of environmental stress. This response is characterised by enhanced expression of a number of genes which contain so-called stress-responsive elements (STREs) in their promoters. In addition, the cells accumulate under suboptimal conditions the putative stress protectant trehalose. In this work, we have examined the expression of four genes encoding subunits of the trehalose synthase complex,GGS1/TPS1, TPS2, TPS3 andTSL1. We show that expression of these genes is coregulated under stress conditions. Like for many other genes containing STREs, expression of the trehalose synthase genes is also induced by heat and osmotic stress and by nutrient starvation, and negatively regulated by the Ras-cAMP pathway. However, during fermentative growth onlyTSL1 shows an expression pattern like that of the STRE-controlled genesCTT1 andSSA3, while expression of the three other trehalose synthase genes is only transiently down-regulated. This difference in expression might be related to the known requirement of trehalose biosynthesis for the control of yeast glycolysis and hence for fermentative growth. We conclude that the mere presence in the promoter of (an) active STRE(s) does not necessarily imply complete coregulation of expression. Additional mechanisms appear to fine tune the activity of STREs in order to adapt the expression of the downstream genes to specific requirements.  相似文献   

14.
15.
16.
17.
Glycine betaine is known to be the preferred osmoprotectant in many bacteria, and glycine betaine accumulation has also been correlated with increased cold tolerance. Trehalose is often a minor osmoprotectant in bacteria and it is a major determinant for desiccation tolerance in many so-called anhydrobiotic organisms such as baker's yeast(Saccharomyces cerevisiae). Escherichia coli has two pathways for synthesis of these protective molecules; i.e., a two-step conversion of UDP-glucose and glucose-6-phosphate to trehalose and a two-step oxidation of externally-supplied choline to glycine betaine. The genes governing the choline-to-glycine betaine pathway have been studied inE. coli and several other bacteria and higher plants. The genes governing UDP-glucose-dependent trehalose synthesis have been studied inE. coli andS. cerevisiae. Because of their well-documented function in stress protection, glycine betaine and trehalose have been identified as targets for metabolic engineering of stress tolerance. Examples of this experimental approach include the expression of theE. coli betA andArthrobacter globiformis codA genes for glycine betaine synthesis in plants and distantly related bacteria, and the expression of theE. coli otsA and yeastTPS1 genes for trehalose synthesis in plants. The published data show that glycine betaine synthesis protects transgenic plants and phototrophic bacteria against stress caused by salt and cold. Trehalose synthesis has been reported to confer increased drought tolerance in transgenic plants, but it causes negative side effects which is of concern. Thus, the much-used model organismE. coli has now become a gene resource for metabolic engineering of stress tolerance.  相似文献   

18.
Deschampsia antarctica (Poaceae) is one of the two vascular plants known to have colonized the Antarctic region. Studies examining the biosynthesis of flavonoids, compounds which plants use, for example, for protection against overexposure to UV light or as antioxidants that scavenge free radicals and other oxidative species, in D. antarctica may provide clues to its success in that extreme environment. We characterized the family of genes encoding chalcone isomerase (CHI EC 5.5.1.6), an important enzyme involved in flavonoid biosynthesis, in D. antarctica. Sequence analysis of the three family members revealed differences in numbers of introns and lengths of coding regions among the three and suggest that DaCHI3 is likely a pseudogene (ψDaChi2). Salinity stress resulted in differential mRNA expression of the DaCHI genes with ψDaCHI2 exhibiting the earliest response (3-h post-treatment), induced by as much as sevenfold, while DaCHI1 and DaCHI2 mRNAs accumulated later (3d and 5d post-treatment, respectively) and, in the case of DaCHI2, with a response of nearly sixfold. We discuss how differences in the proposed gene structures, deduced protein characteristics, and mRNA expression patterns suggest that the members of this gene family may have unique functions in the phenylpropanoid pathway in D. antarctica.  相似文献   

19.
This study is designed to screen the CD40 related signal transduction pathway in AGS cells and construction of gene silencing vector. Analysis results showed 414 differential genes expression, including upregulation of 209 genes and downregulation of 205 genes. Basing on the ratio of signal in experimental group to signal in control group, 45 genes (38 genes upregulation and seven genes downregulation) with significant (P < 0.01) change in expression levels were screened according to the screening standard (signal log ratio ≥1 or ≤?1). These genes involved into metabolism, cell cycle and apoptosis, signal transduction and stress response. Furthermore, PI3K mRNA expression level in PI3K siRNA transfected AGS cells was 0.2335 ± 0.0116 72 h after transfection. This value was significantly (P < 0.05) lower than that in blank and negative control groups. PI3K protein expression in PI3K siRNA transfected AGS cells was significantly (P < 0.05) lower than that in blank and PI3K siRNA/N transfected groups. Therefore, PI3K siRNA gene silencing vector can significantly inhibit PI3K mRNA and protein expression in AGS cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号