首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that more than 20 different human proteins can fold abnormally, resulting in the formation of pathological deposits and several lethal degenerative diseases. Despite extensive investigations on amyloid fibril formation, the detailed molecular mechanism remained rather elusive. The current research, utilizing hen egg-white lysozymes as a model system, is aimed at exploring inhibitory activities of two potential molecules against lysozyme fibril formation. We first demonstrated that the formation of lysozyme amyloid fibrils at pH 2.0 was markedly enhanced by the presence of agitation in comparison with its quiescent counterpart. Next, via numerous spectroscopic techniques and transmission electron microscopy, our results revealed that the inhibition of lysozyme amyloid formation by either rifampicin or its analogue p-benzoquinone followed a concentration-dependent fashion. Furthermore, while both inhibitors were shown to acquire an anti-aggregating and a disaggregating activity, rifampicin, in comparison with p-benzoquinone, served as a more effective inhibitor against in vitro amyloid fibrillogenesis of lysozyme. It is our belief that the data reported in this work will not only reinforce the findings validated by others that rifampicin and p-benzoquinone serve as two promising preventive molecules against amyloid fibrillogenesis, but also shed light on a rational design of effective therapeutics for amyloidogenic diseases.  相似文献   

2.
The amyloidoses are a heterogeneous group of diseases, which are characterized by the local or systemic deposition of amyloid. At the root of these diseases are changes in protein conformation where normal innocuous proteins transform into insoluble amyloid fibrils and deposit in tissues. The amyloid fibrils of Alzheimer's disease are composed of the Abeta peptide and deposit in the form of senile plaques. Neurodegeneration surrounds the amyloid deposits, indicating that neurotoxic substances are produced during the deposition process. Whether the neurotoxic species is the amyloid fibril or a fibril precursor is a current area of active research. This review focuses on advancements made in elucidating the molecular structures of the Abeta amyloid fibril and alternate aggregation products of the Abeta peptide formed during fibrillogenesis.  相似文献   

3.
More than 20 different human proteins can fold abnormally resulting in the formation of pathological deposits and several lethal degenerative diseases. Despite extensive investigations on amyloid fibril formation, the detailed molecular mechanism remained far from complete. In this work, utilizing hen egg-white lysozymes as a model system, two objectives were pursued: (1) to search for suitable conditions for producing amyloid fibrils and (2) to investigate inhibitory activities of two potential molecules against lysozyme fibril formation. Via numerous spectroscopic analyses and electron microscopy, our results showed that the formation of lysozyme amyloid fibrils at pH 2.0 was considerably increased by the addition of salt. Moreover, the inhibition of lysozyme amyloid formation by either p-benzoquinone or melatonin followed a concentration-dependent fashion. Furthermore, p-benzoquinone, in comparison with melatonin, served as a more effective inhibitor against amyloid fibril formation of lysozyme. We believe that a better understanding of how hen egg-white lysozymes aggregate will not only aid in deciphering the molecular mechanism of amyloid fibrillogenesis, but also shed light on a rational design of effective therapeutics for amyloidogenic diseases.  相似文献   

4.
Recent reports give strong support to the idea that amyloid fibril formation and the subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. In this review, recent findings are surveyed to illustrate that protein fibrillogenesis requires a partially folded conformation. This amyloidogenic conformation is relatively unfolded, and shares many structural properties with the pre-molten globule state, a partially folded intermediate frequently observed in the early stages of protein folding and under some equilibrium conditions. The inherent flexibility of such an intermediate is essential in allowing the conformational rearrangements necessary to form the core cross-beta structure of the amyloid fibril.  相似文献   

5.
Our previous studies have demonstrated that perlecan and perlecan-derived glycosaminoglycans (GAGs) not only bind beta-amyloid protein (Abeta) 1-40 and 1-42, but are also potent enhancers of Abeta fibril formation and stabilize amyloid fibrils once formed. However, it was not determined which moieties in perlecan heparan sulfate GAG chains may be responsible for the observed effects and whether other GAGs were also capable of a similar enhancement of Abeta fibril formation as observed with perlecan GAGs. In the present study, thioflavin T fluorometry (over a 1-week period) was used to extend our previous studies and to test the hypothesis that the sulfate moiety is critical for the enhancing effects of heparin/heparan sulfate GAGs on Abeta 1-40 fibrillogenesis. This hypothesis was confirmed when removal of all sulfates from heparin (i.e., completely desulfated N-acetylated heparin) led to a complete loss in the enhancement of Abeta fibrillogenesis as demonstrated in both thioflavin T fluorometry and Congo red staining studies. On the other hand, removal of O-sulfate from heparin (i.e., completely desulfated N-sulfated heparin), and to a lesser extent N-sulfate (i.e., N-desulfated N-acetylated heparin), resulted in only a partial loss of the enhancement of Abeta 1-40 fibril formation. These studies indicate that the sulfate moieties of GAGs are critical for enhancement of Abeta amyloid fibril formation. In addition, other sulfated molecules such as chondroitin-4-sulfate, dermatan sulfate, dextran sulfate, and pentosan polysulfate all significantly enhanced (greater than twofold by 3 days) Abeta amyloid fibril formation. These latter findings indicate that deposition and accumulation of other GAGs at sites of Abeta amyloid deposition in Alzheimer's disease brain may also participate in the enhancement of Abeta amyloidosis.  相似文献   

6.
beta-Amyloid (A beta) deposition in fibril form is the central event in a number of diseases, including Alzheimer's disease (AD) and hereditary cerebral hemorrhage with amyloidosis - Dutch type (HCHWA-D). A beta is produced by degradation of a larger amyloid precursor protein (APP). Recently a mutation in the APP gene has been found in HCHWA-D causing a glutamine for glutamic acid substitution at residue 22 of A beta. The influence of this mutation on fibrillogenesis is not known, although it is clear that affected patients have accelerated cerebrovascular amyloid deposition, with disease symptoms early in life. We report the in vitro demonstration of accelerated fibril formation in a 28 residue synthetic peptide homologous to the Dutch variant A beta. Furthermore, in eight residue peptides homologous to A beta the presence of the mutation is necessary for fibril formation. These findings provide a mechanism for accelerated amyloid formation in the Dutch variant of APP.  相似文献   

7.
Misfolding and aggregation of normally soluble proteins into amyloid fibrils and their deposition and accumulation underlies a variety of clinically significant diseases. Fibrillar aggregates with amyloid-like properties can also be generated in vitro from pure proteins and peptides, including those not known to be associated with amyloidosis. Whereas biophysical studies of amyloid-like fibrils formed in vitro have provided important insights into the molecular mechanisms of amyloid generation and the structural properties of the fibrils formed, amyloidogenic proteins are typically exposed to mild or more extreme denaturing conditions to induce rapid fibril formation in vitro. Whether the structure of the resulting assemblies is representative of their natural in vivo counterparts, thus, remains a fundamental unresolved issue. Here we show using Fourier transform infrared spectroscopy that amyloid-like fibrils formed in vitro from natively folded or unfolded beta(2)-microglobulin (the protein associated with dialysis-related amyloidosis) adopt an identical beta-sheet architecture. The same beta-strand signature is observed whether fibril formation in vitro occurs spontaneously or from seeded reactions. Comparison of these spectra with those of amyloid fibrils extracted from patients with dialysis-related amyloidosis revealed an identical amide I' absorbance maximum, suggestive of a characteristic and conserved amyloid fold. Our results endorse the relevance of biophysical studies for the investigation of the molecular mechanisms of beta(2)-microglobulin fibrillogenesis, knowledge about which may inform understanding of the pathobiology of this protein.  相似文献   

8.
Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone   总被引:1,自引:0,他引:1  
Aggregation of proteins in tissues is associated with several diseases, including Alzheimer's disease. It is characterized by the accumulation of amyloid beta peptide (Abeta) in the extracellular spaces of the brain cells, resulting in neuronal death and other pathological changes. alpha-Crystallin, a small heat-shock protein in lens, and a peptide chaperone having the functional site sequence DFVIFLDVKHFSPEDLTVK of alphaA-crystallin may inhibit Abeta fibrillogenesis and toxicity. The peptide chaperone (mini-alphaA-crystallin), having an Abeta interacting domain and a complex solubilizing domain, was shown in previous studies to prevent aggregation of several proteins under denaturing conditions. In this in vitro study, using transmission electron microscopy and thioflavin T binding assay, we show that mini-alphaA-crystallin arrests the fibril formation of Abeta peptides. Mini-alphaA-crystallin also suppresses the toxic action of Abeta on rat pheochromocytoma (PC 12) cells. The wide chaperoning capability of the peptide and its ability to inhibit amyloid fibril formation and suppress toxicity suggest that mini-alphaA-crystallin may serve as a universal chaperone in controlling diseases of protein aggregation, including Alzheimer's disease.  相似文献   

9.
We have investigated the structure of in vivo formed transthyretin (TTR) amyloid deposits by using antisera raised against short linear sequences of the TTR molecule. In immunohistochemistry, antisera anti-TTR41-50 and anti-TTR115-124-a reacted specifically with both wildtype ATTR and ATTR V30M material, whereas only anti-TTR41-50 recognized ATTR Y114C material. Similar results were obtained by ELISA analysis of ATTR V30M and ATTR Y114C vitreous amyloid, where the anti-TTR115-124-a antiserum failed to react with ATTR Y114C material. Moreover, neither of the antisera recognized natively structured TTR present in pancreatic alpha cells. Our results strongly indicate that the TTR molecule undergoes structural changes during fibrillogenesis in vivo. The finding of a structural difference between wildtype ATTR and ATTR V30M material on one hand and ATTR Y114C material on the other suggests that the fibril formation pathway of these ATTR variants may differ in vivo.  相似文献   

10.
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation.  相似文献   

11.
Plasma (P)-component of amyloid (AP or SAP), while not an integral part of the amyloid fibril, has been considered to be intimately associated with virtually every different type of amyloid. In the present study, we evaluated the distribution of AP in the organs frequently involved in two forms of human systemic amyloidosis (AA and AF) and in mouse AA amyloidosis, by use of immunohistochemistry with anti-AP. Although the amyloid deposits generally showed moderate reactions with anti-AP, they were not always clearly distinguished from the surrounding non-amyloid tissue elements which often stained as well. The basement membrane often showed even stronger reaction to anti-AP than the adjacent amyloid deposits, and liver sections demonstrated such a high overall reaction to anti-AP that the anti-AP reaction on the amyloid deposits was often obscurred. The present results suggest that the binding between AP and the amyloid fibril may not be monospecific, that AP by this technique occurs rather widely throughout the body, and therefore that anti-AP may not be considered as specific a marker for amyloid deposits in immunohistochemical and perhaps other studies as well.  相似文献   

12.
Primary amyloidosis (AL) results from overproduction of unstable monoclonal immunoglobulin light chains (LCs) and the deposition of insoluble fibrils in tissues, leading to fatal organ disease. Glycosaminoglycans (GAGs) are associated with AL fibrils and have been successfully targeted in the treatment of other forms of amyloidosis. We investigated the role of GAGs in LC fibrillogenesis. Ex vivo tissue amyloid fibrils were extracted and examined for structure and associated GAGs. The GAGs were detected along the length of the fibril strand, and the periodicity of heparan sulfate (HS) along the LC fibrils generated in vitro was similar to that of the ex vivo fibrils. To examine the role of sulfated GAGs on AL oligomer and fibril formation in vitro, a κ1 LC purified from urine of a patient with AL amyloidosis was incubated in the presence or absence of GAGs. The fibrils generated in vitro at physiologic concentration, temperature, and pH shared morphologic characteristics with the ex vivo κ1 amyloid fibrils. The presence of HS and over-O-sulfated-heparin enhanced the formation of oligomers and fibrils with HS promoting the most rapid transition. In contrast, GAGs did not enhance fibril formation of a non-amyloidogenic κ1 LC purified from urine of a patient with multiple myeloma. The data indicate that the characteristics of the full-length κ1 amyloidogenic LC, containing post-translational modifications, possess key elements that influence interactions of the LC with HS. These findings highlight the importance of the variable and constant LC regions in GAG interaction and suggest potential therapeutic targets for treatment.  相似文献   

13.
The deposition of aggregated amyloid beta-protein (Abeta) in the human brain is a major lesion in Alzheimer' disease (AD). The process of Abeta fibril formation is associated with a cascade of neuropathogenic events that induces brain neurodegeneration leading to the cognitive and behavioral decline characteristic of AD. Although a detailed knowledge of Abeta assembly is crucial for the development of new therapeutic approaches, our understanding of the molecular mechanisms underlying the initiation of Abeta fibril formation remains very incomplete. The genetic defects responsible for familial AD influence fibrillogenesis. In a majority of familial cases determined by amyloid precursor protein (APP) and presenilin (PS) mutations, a significant overproduction of Abeta and an increase in the Abeta42/Abeta40 ratio are observed. Recently, it was shown that the two main alloforms of Abeta have distinct biological activity and behaviour at the earliest stage of assembly. In vitro studies demonstrated that Abeta42 monomers, but not Abeta40, form initial and minimal structures (pentamer/hexamer units called paranuclei) that can oligomerize to larger forms. It is now apparent that Abeta oligomers and protofibrils are more neurotoxic than mature Abeta fibrils or amyloid plaques. The neurotoxicity of the prefibrillar aggregates appears to result from their ability to impair fundamental cellular processes by interacting with the cellular membrane, causing oxidative stress and increasing free Ca(2+) that eventually lead to apoptotic cell death.  相似文献   

14.
The extracellular deposition of amyloid beta (Abeta) in senile plaques constitutes one of the defining hallmarks of Alzheimer's disease. Abeta peptides can aggregate spontaneously to highly insoluble amyloid fibrils, but several components are likely to influence the kinetics of fibrillogenesis in vivo. We report here that high density lipoprotein (HDL), the predominant lipoprotein in the human brain, reduces amyloid formation in vitro as determined by thioflavin T fluorescence and high speed sedimentation assays. The inhibition occurred in a dose dependent manner, and with concentrations of HDL above 1% resulting in more than 70% inhibition. We also examined the combined effect of apolipoprotein E (apoE) and HDL on Abeta fibrillogenesis. We found that HDL particles enriched with any of the three apoE isoforms inhibited Abeta fibrillogenesis as their native counterparts. Taken together, these findings suggest that HDL-like particles in the brain may prevent the formation of Abeta fibrils.  相似文献   

15.
The deposition of amyloid beta-protein in the brain is a fundamental process in the development of Alzheimerís disease; however, the mechanism underlying aggregation of amyloid beta-protein remains to be determined. Here, we report that a membrane-mimicking environment, generated in the presence of detergents or a ganglioside, is sufficient per se for amyloid fibril formation from soluble amyloid beta-protein. Furthermore, hereditary variants of amyloid beta-protein, which are caused by amyloid precursor protein gene mutations, including the Dutch (E693Q), Flemish (A692G) and Arctic (E693G) types, show mutually different aggregation behavior in these environments. Notably, the Arctic-type amyloid beta-protein, in contrast to the wild-type and other variant forms, shows a markedly rapid and higher level of amyloid fibril formation in the presence of sodium dodecyl sulfate or GM1 ganglioside. These results suggest that there are favorable local environments for fibrillogenesis of amyloid beta-protein.  相似文献   

16.
Beta-amyloid peptide (A beta) is the major proteinacious constituent of senile plaques in Alzheimer's disease and is believed to be responsible for the neurodegeneration process associated with the disease. While the actual size of the aggregated species responsible for A beta neurotoxicity and fibrillogenesis mechanism(s) remain unknown, retardation of A beta aggregation still holds assurance as an effective strategy in reducing A beta-elicited toxicity. The research presented here is aimed at examining the inhibitory effect of two amphiphilic surfactants, di-C6-PC and di-C7-PC, on the in vitro fibrillogenesis process of A beta(1--40) peptides at physiological pH (pH 7.2). Using ThT-induced fluorescence, turbidity, Congo red binding, and circular dichroism spectroscopy studies, our research demonstrated that the inhibition of A beta(1--40) fibril formation was di-C6-PC and di-C7-PC concentration-dependent. The best inhibitory action on fibril formation was observed when A beta was incubated with di-C7-PC at 100 microM over time. We believe that the outcome from this work will aid in the development and/or design of potential inhibitory agents against amyloid formation associated with Alzheimer's and other amyloid diseases.  相似文献   

17.
Phospholipid catalysis of diabetic amyloid assembly   总被引:6,自引:0,他引:6  
Islet amyloid polypeptide (IAPP) is a 37-residue hormone that forms cytotoxic amyloid fibers in the endocrine pancreas of patients with type II diabetes (NIDDM). A potential origin for cytotoxicity is disruption of lipid membranes by IAPP as has been observed in vitro. The cause of amyloid formation during NIDDM is not known, nor is the mechanism by which membrane disruption occurs in vitro. Here, we use kinetic studies in conjunction with assessments of lipid binding and electron microscopy to investigate the interactions of IAPP with phospholipid bilayers and the morphological effects of membranes on IAPP fibers. Fibrillogenesis of IAPP is catalyzed by synthetic and human tissue-derived phospholipids, leading to >tenfold increases in the rate of fibrillogenesis. The molecular basis of this phenomenon includes a strong dependence on the concentration and charge density of the membrane. IAPP binds to lipid membranes of mixed anionic (DOPG) and zwitterionic (DOPC) content. The transition for binding occurs over a physiologically relevant range of anionic content. Membrane binding by IAPP occurs on timescales that are short compared to fibrillogenesis and results in assembly into preamyloid states via ordered interactions at the N but not C terminus of the protein. These assemblies lead both to gross morphological changes in liposomes and to alterations in the appearance of early fibers when compared to liposome-free fibril formation. Intact bilayer surfaces are regenerated upon dissociation of fibers from the membrane surface. These findings offer a structural mechanism of membrane destabilization and suggest that changes in lipid metabolism could induce IAPP fiber formation in NIDDM.  相似文献   

18.
Islet amyloid, a pathologic feature of type 2 diabetes, contains the islet β-cell peptide islet amyloid polypeptide (IAPP) as its unique amyloidogenic component. Islet amyloid also contains heparan sulfate proteoglycans (HSPGs) that may contribute to amyloid formation by binding IAPP via their heparan sulfate (HS) chains. We hypothesized that β-cells produce HS that bind IAPP via regions of highly sulfated disaccharides. Unexpectedly, HS from the β-cell line β-TC3 contained fewer regions of highly sulfated disaccharides compared with control normal murine mammary gland (NMuMG) cells. The proportion of HS that bound IAPP was similar in both cell lines (∼65%). The sulfation pattern of IAPP-bound versus non-bound HS from β-TC3 cells was similar. In contrast, IAPP-bound HS from NMuMG cells contained frequent highly sulfated regions, whereas the non-bound material demonstrated fewer sulfated regions. Fibril formation from IAPP was stimulated equally by IAPP-bound β-TC3 HS, non-bound β-TC3 HS, and non-bound NMuMG HS but was stimulated to a greater extent by the highly sulfated IAPP-bound NMuMG HS. Desulfation of HS decreased the ability of both β-TC3 and NMuMG HS to stimulate IAPP maximal fibril formation, but desulfated HS from both cell types still accelerated fibril formation relative to IAPP alone. In summary, neither binding to nor acceleration of fibril formation from the amyloidogenic peptide IAPP is dependent on overall sulfation in HS synthesized by β-TC3 cells. This information will be important in determining approaches to reduce HS-IAPP interactions and ultimately prevent islet amyloid formation and its toxic effects in type 2 diabetes.  相似文献   

19.
Amyloid proteins and peptides comprise a diverse group of molecules that vary both in size and amino-acid sequence, yet assemble into amyloid fibrils that have a common core structure. Kinetic studies of amyloid fibrillogenesis have revealed that certain amyloid proteins form oligomeric intermediates prior to fibril formation. We have investigated fibril formation with a peptide corresponding to residues 195-213 of the human prion protein. Through a combination of kinetic and equilibrium studies, we have found that the fibrillogenesis of this peptide proceeds as an all-or-none reaction where oligomeric intermediates are not stably populated. This variation in whether oligomeric intermediates are stably populated during fibril formation indicates that amyloid proteins assemble into a common fibrillar structure; however, they do so through different pathways.  相似文献   

20.
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high‐density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号