首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

2.
The activity of and potential substrates for methane-producing bacteria and sulfate-reducing bacteria were examined in marsh, estuary, and beach intertidal sediments. Slow rates of methane production were detected in all sediments, although rates of sulfate reduction were 100- to 1,000-fold higher. After sulfate was depleted in sediments, the rates of methane production sharply increased. The addition of methylamine stimulated methanogenesis in the presence of sulfate, and [14C]methylamine was rapidly converted to 14CH4 and 14CO2 in freshly collected marsh sediment. Acetate, hydrogen, or methionine additions did not stimulate methanogenesis. [methyl-14C]methionine and [2-14C]acetate were converted to 14CO2 and not to 14CH4 in fresh sediment. No reduction of 14CO2 to 14CH4 occurred in fresh sediment. Molybdate, an inhibitor of sulfate reduction, inhibited [2-14C]acetate metabolism by 98.5%. Fluoracetate, an inhibitor of acetate metabolism, inhibited sulfate reduction by 61%. These results suggest that acetate is a major electron donor for sulfate reduction in marine sediments. In the presence of high concentrations of sulfate, methane may be derived from novel substrates such as methylamine.  相似文献   

3.
The carbon and electron flow pathways and the bacterial populations responsible for transformation of H2-CO2, formate, methanol, methylamine, acetate, glycine, ethanol, and lactate were examined in sediments collected from Knaack Lake, Wis. The sediments were 60% organic matter (pH 6.2) and did not display detectable sulfate-reducing activity, but they contained the following average concentration (in micromoles per liter of sediment) of metabolites and end products: sulfide, 10; methane, 1,540; CO2, 3,950; formate, 25; acetate, 157; ethanol, 174; and lactate, 138. Methane was produced predominately from acetate, and only 4% of the total CH4 was derived from CO2. Methanogenesis was limited by low environmental temperature and sulfide levels and more importantly by low pH. Increasing in vitro pH to neutral values enhanced total methane production rates and the percentage of CO2 transformed to methane but did not alter the amount of 14CO2 produced from [2-14C]acetate (~24%). Analysis of both carbon transformation parameters with 14C-labeled tracers and bacterial trophic group enumerations indicated that methanogenesis from acetate and both heterolactic- and acetic acid-producing fermentations were important to the anaerobic digestion process.  相似文献   

4.
The anaerobic metabolism of acetate was studied in sediments and groundwater from a gas condensate-contaminated aquifer in an aquifer where geochemical evidence implicated sulfate reduction and methanogenesis as the predominant terminal electron-accepting processes. Most-probable-number tubes containing acetate and microcosms containing either [2-14C]acetate or [U-14C]acetate produced higher quantities of CH4 compared to CO2 in the presence or absence of sulfate.14CH4 accounted for 70 to 100% of the total labeled gas in the [14C]acetate microcosms regardless of whether sulfate was present or not. Denaturing gradient gel electrophoresis of the acetate enrichments both with and without sulfate using Archaea-specific primers showed identical predominant bands that had 99% sequence similarity to members of Methanosaetaceae. Clone libraries containing archaeal 16S rRNA gene sequences amplified from sediment from the contaminated portion of the aquifer showed that 180 of the 190 clones sequenced belonged to the Methanosaetaceae. The production of methane and the high frequency of sequences from the Methanosaetaceae in acetate enrichments with and without sulfate indicate that aceticlastic methanogenesis was the predominant fate of acetate at this site even though sulfate-reducing bacteria would be expected to consume acetate in the presence of sulfate.  相似文献   

5.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1 compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ~0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.  相似文献   

6.
In vitro incubation of Santa Barbara Basin sediments indicated that methane production occurs at all depths sampled, including those in which sulfate reduction occurs. Methane production in the sulfate zone decreases with depth. U‐14C‐lactate is readily metabolized in the sulfate‐reducing zone, with 14CO2 production being greater than 14CH4 production. However, if sulfate is added to incubated sediments that have become depleted in sulfate, the 14CH4 production increases dramatically at the expense of 14CO2 production. Contrary to what has been observed in other ecosystems, sulfate stimulated methane production, especially from lactate. Experiments using 2‐14C‐acetate or H14CO3 have indicated that bicarbonate is the principal source of methane and acetate is oxidized to CO2 in sediments from the methane‐producing zone.  相似文献   

7.
During one year, concentration profiles of sulfate and methane were measured in sediment cores of eutrophic Lake Loosdrecht. Sulfate concentrations decreased exponentially with depth towards a constant threshold value of 7.6 ± 6.1 μM. Concentration profiles were used to calculate fluxes of sulfate and methane and to estimate the anaerobic mineralization rate. Anaerobic mineralization was highest in autumn which was probably due to an increased sedimentation of easily degradable organic carbon. At high rates (>600 μ mol organic carbon .m−2.h−1), sulfate reduction appeared to be limited by sulfate and methanogenesis accounted for over 80% of the anaerobic mineralization. At low anaerobic mineralization rates, measured in winter and spring, sulfate reduction was predominant. There was little methanogenesis below 5 cm depth in the sediment which indicated a rapid decrease of degradable organic matter with depth. There was a remarkable difference, especially in winter, between methane fluxes which were measured in batch experiments and those calculated from the concentration profiles in the sediment. These differences may be due to methane diffusing upward from deep layers.  相似文献   

8.
An investigation of carbon and electron flow in mud and sandflat intertidal sediments showed that the terminal electron acceptor was principally sulfate and that the carbon flow was mainly to CO2. Studies with thin layers of sediment exposed to H2 showed that methane production accounted for virtually none of the H2 utilized, whereas sulfate reduction accounted for a major proportion of the gas uptake. At all sampling sites except one (site B7), rates of methanogenesis were low but sulfate concentrations in the interstitial water were high (>18 mM). At site B7, the sulfate concentrations declined with depth from 32 mM at 2 cm to <1 mM at 10 cm or below, and active methanogenesis occurred in the low-sulfate zone. Sulfate-reducing activity at this site initially decreased and then increased with depth so that elevated rates occurred in both the active and nonactive methanogenic zones. The respiratory index (RI) [RI = 14CO2/(14CO2 + 14CH4)] for [2-14C]acetate catabolism at site B7 ranged from 0.98 to 0.2 in the depth range of 2 to 14 cm. Addition of sulfate to sediment from the low-sulfate zone resulted in an increase in RI and a decrease in methanogenesis. At all other sites examined, RI ranged from 0.97 to 0.99 and was constant with depth. The results suggested that although methanogenesis was inhibited by sulfate (presumably through the activity of sulfate-reducing bacteria), it was not always limited by sulfate reduction.  相似文献   

9.
Lake Matano, Indonesia, is a stratified anoxic lake with iron‐rich waters that has been used as an analogue for the Archean and early Proterozoic oceans. Past studies of Lake Matano report large amounts of methane production, with as much as 80% of primary production degraded via methanogenesis. Low δ13C values of DIC in the lake are difficult to reconcile with this notion, as fractionation during methanogenesis produces isotopically heavy CO2. To help reconcile these observations, we develop a box model of the carbon cycle in ferruginous Lake Matano, Indonesia, that satisfies the constraints of CH4 and DIC isotopic profiles, sediment composition, and alkalinity. We estimate methane fluxes smaller than originally proposed, with about 9% of organic carbon export to the deep waters degraded via methanogenesis. In addition, despite the abundance of Fe within the waters, anoxic ferric iron respiration of organic matter degrades <3% of organic carbon export, leaving methanogenesis as the largest contributor to anaerobic organic matter remineralization, while indicating a relatively minor role for iron as an electron acceptor. As the majority of carbon exported is buried in the sediments, we suggest that the role of methane in the Archean and early Proterozoic oceans is less significant than presumed in other studies.  相似文献   

10.
The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH4 and CO2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ13C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of 14C from radiolabeled CH4 or CO2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with 14CH4 or 14CO2 revealed that there was interconversion of CH4 and CO2. The level of CO2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.  相似文献   

11.
The effect of sulfate on methane production in Lake Mendota sediments was investigated to clarify the mechanism of sulfate inhibition of methanogenesis. Methanogenesis was shown to be inhibited by the addition of as little as 0.2 mM sulfate. Sulfate inhibition was reversed by the addition of either H2 or acetate. Methane evolved when inhibition was reversed by H2 additions was derived from 14CO2. Conversely, when acetate was added to overcome sulfate inhibition, the evolved methane was derived from [2-14C]acetate. A competition for available H2 and acetate was proposed as the mechanism by which sulfate inhibited methanogenesis. Acetate was shown to be metabolized even in the absence of methanogenic activity. In the presence of sulfate, the methyl position of acetate was converted to CO2. The addition of sulfate to sediments did not result in the accumulation of significant amounts of sulfide in the pore water. Sulfate additions did not inhibit methanogenesis unless greater than 100 mug of free sulfide per ml was present in the pore water. These results indicate that carbon and electron flow are altered when sulfate is added to sediments. Sulfate-reducing organisms appear to assume the role of methanogenic bacteria in sulfate-containing sediments by utilizing methanogenic precursors.  相似文献   

12.
The effect of different substrates and different levels of sulfate and sulfide on methane production relative to sulfate reduction in high-rate anaerobic digestion was evaluated. Reactors could be acclimated so that sulfate up to a concentration of 5 g of sulfate S per liter did not significantly affect methanogenesis. Higher levels gave inhibition because of salt toxicity. Sulfate reduction was optimal at a relatively low level of sulfate, i.e., 0.5 g of sulfate S per liter, but was also not significantly affected by higher levels. Both acetoclastic and hydrogenotrophic methane-producing bacteria adapted to much higher levels of free H2S than the values reported in the literature (50% inhibition occurred only at free H2S levels of more than 1,000 mg/liter). High levels of free H2S affected the sulfate-reducing bacteria only slightly. Formate and acetate supported the sulfate-reducing bacteria very poorly. In the high-rate reactors studied, intensive H2S formation occurred only when H2 gas or an H2 precursor such as ethanol was supplied.  相似文献   

13.
Organic matter decomposition regulates rates of carbon loss (CO2 and CH4) in wetlands and has implications for carbon sequestration in the context of changing global temperature. Here we determined the influence of temperature and vegetation type on both aerobic and anaerobic decomposition of organic matter in subtropical wetland soils. As in many other studies, increased temperature resulted in higher rates of respiration and methanogenesis under both aerobic and anaerobic conditions, and the positive effect of temperature depended on vegetation (source of carbon substrate to soil). Under anaerobic incubations, the proportion of gaseous C (CO2 and CH4) lost as CH4 increased with temperature indicating a greater sensitivity of methanogenesis to temperature. This was further supported by a wider range of Q10 values (1.4–3.6) for methane production as compared with anaerobic CO2 (1.3–2.5) or aerobic CO2 (1.4–2.1) production. The increasing strength of positive linear correlation between CO2:CH4 ratio and the soil organic matter ligno-cellulose index at higher temperature indicated that the temperature sensitivity of methanogenesis was likely the result of increased C availability at higher temperature. This information adds to our basic understanding of decomposition in warmer subtropical and tropical wetland systems and has implications for C models in wetlands with different vegetation types.  相似文献   

14.
The differential impact of microbial sulfate reduction and methanogenesis on the mineralization of particulate organic carbon (POC) in warm monomictic Lake Kinneret (LK), Israel was studied during three consecutive lake cycles. The hypolimnetic accumulation of total sulfide and dissolved methane was examined in relation to the physical forcing of the water column and the settling flux of particulate matter. With the on-set of thermal stratification in spring, both solutes increased concomitantly with the depletion of oxygen, first in the benthic boundary layer, followed by the upper hypolimnion. Methane production was restricted to the sediments as emphasized by the persistently linear concentration gradient in the hypolimnion. Sulfate reduction occurred both in the sediments and the water column as revealed by the hypolimnetic distribution of sulfide and recurring metalimnetic sulfide peaks. Annual differences in the accumulation pattern of both solutes appeared to be primarily linked to the settling flux of POC and the length of the stratified season. Relatively lower hypolimnetic concentrations of dissolved methane during the stratified season of 2000 coincided with increased ebullition of gaseous methane, likely as the result of a nearly a 2 m drop in the lake level. Overall, sulfate reduction accounted for more than 60% of the POC settling flux, a finding that differs from similar studies made in temperate lakes where methanogenesis was shown to be the primary mode of terminal carbon mineralization. Intensive organic carbon turnover at the sediment water interface and comparatively high sulfate concentrations in LK are the most likely reason.  相似文献   

15.
The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other salt marsh bacteria. Actively growing chitinoclastic bacterial isolates produced primarily acetate, H2, and CO2 in broth culture. No sulfate-reducing or methanogenic isolates grew on chitin as sole carbon source or produced any measurable degradation products. Mixed cultures of chitin degraders with sulfate reducers resulted in positive sulfide production. Mixed cultures of chitin-degrading isolates with methanogens resulted in the production of CH4 with reductions in headspace CO2 and H2. The combination of all three metabolic types resulted in the simultaneous production of methane and sulfide, with more methane being produced in mixed cultures containing CO2-reducing methanogens and acetoclastic sulfate reducers because of less interspecific H2 competition.  相似文献   

16.
The fates of acetate and carbon dioxide were examined in several experiments designed to indicate their relative contributions to methane production at various temperatures in two low-sulfate, hot-spring algal-bacterial mats. [2-14C]acetate was predominantly incorporated into cell material, although some 14CH4 and 14CO2 was produced. Acetate incorporation was reduced by dark incubation in short-term experiments and severely depressed by a 2-day preincubation in darkness. Autoradiograms showed that acetate was incorporated by long filaments resembling phototrophic microorganisms of the mat communities. [3H]acetate was not converted to C3H4 in samples from Octopus Spring collected at the optimum temperature for methanogenesis. NaH14CO3 was readily converted to 14CH4 at temperatures at which methanogenesis was active in both mats. Comparisons of the specific activities of methane and carbon dioxide suggested that of the methane produced, 80 ± 6% in Octopus Spring and 71 ± 21% in Wiegert Channel were derived from carbon dioxide. Addition of acetate to 1 mM did not reduce the relative importance of carbon dioxide as a methane precursor in samples from Octopus Spring. Experiments with pure cultures of Methanobacterium thermoautotrophicum suggested that the measured ratio of specific activities might underestimate the true contribution of carbon dioxide in methanogenesis.  相似文献   

17.
In Lake Matano, Indonesia, the world’s largest known ferruginous basin, more than 50% of authigenic organic matter is degraded through methanogenesis, despite high abundances of Fe (hydr)oxides in the lake sediments. Biogenic CH4 accumulates to high concentrations (up to 1.4 mmol L?1) in the anoxic bottom waters, which contain a total of 7.4 × 105 tons of CH4. Profiles of dissolved inorganic carbon (ΣCO2) and carbon isotopes (δ13C) show that CH4 is oxidized in the vicinity of the persistent pycnocline and that some of this CH4 is likely oxidized anaerobically. The dearth of NO3? and SO42? in Lake Matano waters suggests that anaerobic methane oxidation may be coupled to the reduction of Fe (and/or Mn) (hydr)oxides. Thermodynamic considerations reveal that CH4 oxidation coupled to Fe(III) or Mn(III/IV) reduction would yield sufficient free energy to support microbial growth at the substrate levels present in Lake Matano. Flux calculations imply that Fe and Mn must be recycled several times directly within the water column to balance the upward flux of CH4. 16S gene cloning identified methanogens in the anoxic water column, and these methanogens belong to groups capable of both acetoclastic and hydrogenotrophic methanogenesis. We find that methane is important in C cycling, even in this very Fe‐rich environment. Such Fe‐rich environments are rare on Earth today, but they are analogous to conditions in the ferruginous oceans thought to prevail during much of the Archean Eon. By analogy, methanogens and methanotrophs could have formed an important part of the Archean Ocean ecosystem.  相似文献   

18.
Anaerobic Methane Oxidation: Occurrence and Ecology   总被引:19,自引:11,他引:8       下载免费PDF全文
Anoxic sediments and digested sewage sludge anaerobically oxidized methane to carbon dioxide while producing methane. This strictly anaerobic process showed a temperature optimum between 25 and 37°C, indicating an active microbial participation in this reaction. Methane oxidation in these anaerobic habitats was inhibited by oxygen. The rate of the oxidation followed the rate of methane production. The observed anoxic methane oxidation in Lake Mendota and digested sewage sludge was more sensitive to 2-bromoethanesulfonic acid than the simultaneous methane formation. Sulfate diminished methane formation as well as methane oxidation. However, in the presence of iron and sulfate the ratio of methane oxidized to methane formed increased markedly. Manganese dioxide and higher partial pressures of methane also stimulated the oxidation. The rate of methane oxidation in untreated samples was approximately 2% of the CH4 production rate in Lake Mendota sediments and 8% of that in digested sludge. This percentage could be increased up to 90% in sludge in the presence of 10 mM ferrous sulfate and at a partial pressure of methane of 20 atm (2,027 kPa).  相似文献   

19.
Citrate is an important component of metal processing effluents such as chemical mechanical planarization wastewaters of the semiconductor industry. Citrate can serve as an electron donor for sulfate reduction applied to promote the removal of metals, and it can also potentially be used by methanogens that coexist in anaerobic biofilms. The objective of this study was to evaluate the degradation of citrate with sulfate-reducing and methanogenic biofilms. During batch bioassays, the citrate, acetate, methane and sulfide concentrations were monitored. The results indicate that independent of the biofilm or incubation conditions used, citrate was rapidly fermented with specific rates ranging from 566 to 720 mg chemical oxygen demand (COD) consumed per gram volatile suspended solids per day. Acetate was found to be the main fermentation product of citrate degradation, which was later degraded completely under either methanogenic or sulfate reducing conditions. However, if either sulfate reduction or methanogenesis was infeasible due to specific inhibitors (2-bromoethane sulfonate), absence of sulfate or lack of adequate microorganisms in the biofilm, acetate accumulated to levels accounting for 90–100% of the citrate-COD consumed. Based on carbon balances measured in phosphate buffered bioassays, acetate, CO2 and hydrogen are the main products of citrate fermentation, with a molar ratio of 2:2:1 per mol of citrate, respectively. In bicarbonate buffered bioassays, acetogenesis of H2 and CO2 increased the yield of acetate. The results taken as a whole suggest that in anaerobic biofilm systems, citrate is metabolized via the formation of acetate as the main metabolic intermediate prior to methanogenesis or sulfate reduction. Sulfate reducing consortia must be enriched to utilize acetate as an electron donor in order to utilize the majority of the electron-equivalents in citrate.  相似文献   

20.
Tracer Analysis of Methanogenesis in Salt Marsh Soils   总被引:11,自引:10,他引:1       下载免费PDF全文
Differences in paths of carbon flow have been found in soils of the tall (TS) and short (SS) Spartina alterniflora marshes of Sapelo Island, Ga. Gaseous end products of [U-14C]glucose metabolism were 14CO2 and 14CH4 in the SS region and primarily 14CO2 in the TS region. Sulfate concentration did not demonstrably affect glucose catabolism or the distribution of end products in either zone. [U-14C]acetate was converted to 14CO2 and 14CH4 in the SS soils and almost exclusively to 14CO2 in the TS soils. Sulfate concentration did not affect acetate metabolism in the SS soils; however, a noticeable effect of sulfate dilution was seen in TS soils. Sulfate dilution in TS samples resulted in increased methane formation. Total glucose and acetate metabolism were similar in TS and SS soils despite differences in end products. A microbial community characterized by fermentative/sulfate-reducing processes has developed in TS soils as opposed to the fermentative/methanogenic/sulfate-reducing community found in SS soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号