首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and "Methylothermus," which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57 degrees C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.  相似文献   

2.
The activity and community structure of methanotrophs in compartmented microcosms were investigated over the growth period of rice plants. In situ methane oxidation was important only during the vegetative growth phase of the plants and later became negligible. The in situ activity was not directly correlated with methanotrophic cell counts, which increased even after the decrease in in situ activity, possibly due to the presence of both vegetative cells and resting stages. By dividing the microcosms into two soil and two root compartments it was possible to locate methanotrophic growth and activity, which was greatest in the rhizoplane of the rice plants. Molecular analysis by denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH) with family-specific probes revealed the presence of both families of methanotrophs in soil and root compartments over the whole season. Changes in community structure were detected only for members of the Methylococcaceae and could be associated only with changes in the genus Methylobacter and not with changes in the dominance of different genera in the family Methylococcaceae. For the family Methylocystaceae stable communities in all compartments for the whole season were observed. FISH analysis revealed evidence of in situ dominance of the Methylocystaceae in all compartments. The numbers of Methylococcaceae cells were relatively high only in the rhizoplane, demonstrating the importance of rice roots for growth and maintenance of methanotrophic diversity in the soil.  相似文献   

3.
The 16S rRNA and pmoA genes from natural populations of methane-oxidizing bacteria (methanotrophs) were PCR amplified from total community DNA extracted from Lake Washington sediments obtained from the area where peak methane oxidation occurred. Clone libraries were constructed for each of the genes, and approximately 200 clones from each library were analyzed by using restriction fragment length polymorphism (RFLP) and the tetrameric restriction enzymes MspI, HaeIII, and HhaI. The PCR products were grouped based on their RFLP patterns, and representatives of each group were sequenced and analyzed. Studies of the 16S rRNA data obtained indicated that the existing primers did not reveal the total methanotrophic diversity present when these data were compared with pure-culture data obtained from the same environment. New primers specific for methanotrophs belonging to the genera Methylomonas, Methylosinus, and Methylocystis were developed and used to construct more complete clone libraries. Furthermore, a new primer was designed for one of the genes of the particulate methane monooxygenase in methanotrophs, pmoA. Phylogenetic analyses of both the 16S rRNA and pmoA gene sequences indicated that the new primers should detect these genes over the known diversity in methanotrophs. In addition to these findings, 16S rRNA data obtained in this study were combined with previously described phylogenetic data in order to identify operational taxonomic units that can be used to identify methanotrophs at the genus level.  相似文献   

4.
Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 106 cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 104 type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 106 type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (±0.2) × 106 cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.  相似文献   

5.
The mxaF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria.  相似文献   

6.
Methanotrophic bacteria are widespread and use methane as a sole carbon and energy source. They also play a crucial role in marine ecosystems by preventing the escape of methane into the atmosphere from diverse methane sources, such as methane seeps and hydrothermal vents. Despite their importance for methane carbon cycling, relatively few marine methanotrophic bacteria have been isolated and studied at the genomic level. Herein, we report the genome of a marine methanotrophic member of the genus Methylomicrobium, metagenome-assembled genome (MAG) wino1, which was obtained through enrichment using methane as the sole carbon source. Phylogenetic analysis based on 16S rRNA sequences and comparison of pmoA genes supported the close relationship of MAG-wino1 to the genus Methylomicrobium and it possessed a genome of 5.06 Mb encoding many specialized methanotrophic genes. A comparison of MAG-wino1 with the genomes of other strains (Methylomicrobium alcaliphilum 20ZT and Methylomicrobium buryatense 5G) showed that genes (e.g. ectABC, ask, and mscLS) involved in the accumulation of compatible solutes required for survival in marine environments might be conserved. Methane utilization genes, including methanol dehydrogenase, and key enzymes related to ribulose monophosphate (RuMP) metabolism were identified. The wino1 genome harbored nitrogen fixation, urease, urea and nitrate transporter genes involved in the exploitation of nitrogen sources. Poly-β-hydroxybutyrate degradation and glycogen synthesis-related genes may facilitate survival under nutrient-limiting conditions. Additionally, genome analysis revealed three dominant taxa in the enrichment culture, methanotroph Methylomicrobium sp., methylotroph Methyloceanibacter sp., and non-methylotroph Labrenzia sp., which provided insights into microbial associations in marine sediments.  相似文献   

7.
Ten strains of aerobic methanotrophic bacteria represented by halophilic neutrophiles or halotolerant alkaliphiles were isolated from saline and alkaline lakes of southeast Siberia, Mongolia, Africa, and North America. Based on analysis of the nucleotide sequences of 16S rRNA gene and the pmoA gene encoding particulate methane monooxygenase, the isolates were classified as Methylomicrobium alcaliphilum, Methylomicrobium buryatense, and Methylobacter marinus. All strains of the genus Methylomicrobium were shown to synthesize glycoprotein S-layers located on the cell surface with hexagonal symmetry (p6) as a monolayer of cup-shaped structures or fine “inverted” conical structures and as plates consisting of protein subunits with inclined (p2) symmetry. During adaptation to the high salinity of the medium, isolated methanotrophs synthesize osmoprotectants: ectoine, sucrose, and glutamate. The ectC gene encoding ectoine synthase (EctC) was identified in six methanotrophic strains. Phylogenetic analysis of translated amino acid sequence of the ectC gene fragment suggests lateral transfer of the genes of ectoine synthesis as the most probable way for methanotrophs to acquire resistance to high external salinity.  相似文献   

8.
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  相似文献   

9.
The PCR analysis of DNA extracted from soil samples taken in the Russian northern taiga and subarctic tundra showed that the DNA extracts contain genes specific to methanotrophic bacteria, i.e., the mmoX gene encoding the conserved -subunit of the hydroxylase component of soluble methane monooxygenase, the pmoA gene encoding the -subunit of particulate methane monooxygenase, and the mxaFgene encoding the -subunit of methanol dehydrogenase. PCR analysis with group-specific primers also showed that methanotrophic bacteria in the northern taiga and subarctic tundra soils are essentially represented by the type I genera Methylobacter, Methylomonas, Methylosphaera, and Methylomicrobium and that some soil samples contain type II methanotrophs close to members of the genera Methylosinus and Methylocystis. The electron microscopic examination of enrichment cultures obtained from the soil samples confirmed the presence of methanotrophic bacteria in the ecosystems studied and showed that the methanotrophs contain only small amounts of intracytoplasmic membranes.  相似文献   

10.
Aerobic methane-oxidizing bacteria (MOB) are an environmentally significant group of microorganisms due to their role in the global carbon cycle. Research conducted over the past few decades has increased the interest in discovering novel genera of methane-degrading bacteria, which efficiently utilize methane and decrease the global warming effect. Moreover, methanotrophs have more promising applications in environmental bioengineering, biotechnology, and pharmacy. The investigations were undertaken to recognize the variety of endophytic methanotrophic bacteria associated with Carex nigra, Vaccinium oxycoccus, and Eriophorum vaginatum originating from Moszne peatland (East Poland). Methanotrophic bacteria were isolated from plants by adding sterile fragments of different parts of plants (roots and stems) to agar mineral medium (nitrate mineral salts (NMS)) and incubated at different methane values (1–20% CH4). Single colonies were streaked on new NMS agar media and, after incubation, transferred to liquid NMS medium. Bacterial growth dynamics in the culture solution was studied by optical density—OD600 and methane consumption. Changes in the methane concentration during incubation were controlled by the gas chromatography technique. Characterization of methanotrophs was made by fluorescence in situ hybridization (FISH) with Mg705 and Mg84 for type I methanotrophs and Ma450 for type II methanotrophs. Identification of endophytes was performed after 16S ribosomal RNA (rRNA) and mmoX gene amplification. Our study confirmed the presence of both types of methanotrophic bacteria (types I and II) with the predominance of type I methanotrophs. Among cultivable methanotrophs, there were different strains of the genus Methylomonas and Methylosinus. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged from 0.463 ± 0.067 to 5.928 ± 0.169 μmol/L CH4/mL/day.  相似文献   

11.
Structural and functional characteristics of the regular glycoprotein layers in prokaryotes are analyzed with a special emphasis on aerobic methanotrophic bacteria. S-Layers are present at the surfaces of Methylococcus, Methylothermus, and Methylomicrobium cells. Different Methylomicrobium species either synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conical structures with hexagonal (p6) symmetry. A unique, copper-binding polypeptide ‘CorA’/MopE (27/45 kDa), which is coexpressed with the diheme periplasmic cytochrome c peroxidase ‘CorB’/Mca (80 kDa) was found in Methylomicrobium album BG8, Methylomicrobium alcaliphilum 20Z, and Methylococcus capsulatus Bath. This tandem of the surface proteins is functionally analogous to a new siderophore: methanobactin. Importantly, no ‘CorA’/MopE homologue was found in methanotrophs not forming S-layers. The role of surface proteins in copper metabolism and initial methane oxidation is discussed.  相似文献   

12.
Atmospheric methane is degraded by both photooxidation and, in topsoils, by methanotrophic bacteria, but this may not totally account for the global sink of this greenhouse gas. Topsoils are a prominent source of airborne bacteria, which can degrade some organic atmospheric compounds at rates similar to photooxidation. Although airborne methanotrophs would have direct access to atmospheric methane, their presence and activity in the atmosphere has not been investigated so far. We enriched airborne methanotrophs from air and rainwater and showed that they oxidized methane at atmospheric concentration. The majority of seven OTUs, detected using pmoA gene clone libraries, were affiliated to the type II methanotrophic genera Methylocystis and Methylosinus. Furthermore, 16S rRNA gene clone libraries revealed the presence of OTUs affiliated with the genera Hyphomicrobium and Variovorax, members of which can stimulate methane oxidation by yet unidentified mechanisms. Simulating cloud-like conditions revealed that although both low pH and the presence of common cloud-borne organics negatively affected methane oxidation, airborne methanotrophs were able to degrade atmospheric methane in most cases. We demonstrate here for the first time that viable methanotrophic bacteria are present in air and rain and thus expand our knowledge on the global distribution of methanotrophs to include the atmosphere. The fact that they can degrade methane to below atmospheric concentrations when inoculated into artificial cloud water leads to an important possible effect of these organisms: the atmosphere may not only function as a medium for microbial dissemination, but also as a site of active microbial methane turnover.  相似文献   

13.
Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10°C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20°C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40°C from a sample collected in May (the temperature of the cover soil was 11.5–12.5°C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S rRNA genes with the type strain SV96T) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15°C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96.  相似文献   

14.
Methanotrophic Verrucomicrobia have been found in geothermal environments characterized by high temperatures and low pH values. However, it has recently been hypothesized that methanotrophic Verrucomicrobia could be present under a broader range of environmental conditions. Here we describe the isolation and characterization of three new species of mesophilic acidophilic verrucomicrobial methanotrophs from a volcanic soil in Italy. The three new species showed 97% to 98% 16S rRNA gene identity to each other but were related only distantly (89% to 90% on the 16S rRNA level) to the thermophilic genus Methylacidiphilum. We propose the new genus Methylacidimicrobium, including the novel species Methylacidimicrobium fagopyrum, Methylacidimicrobium tartarophylax, and Methylacidimicrobium cyclopophantes. These mesophilic Methylacidimicrobium spp. were more acid tolerant than their thermophilic relatives; the most tolerant species, M. tartarophylax, still grew at pH 0.5. The variation in growth temperature optima (35 to 44°C) and maximum growth rates (µmax; 0.013 to 0.040 h−1) suggested that all species were adapted to a specific niche within the geothermal environment. All three species grew autotrophically using the Calvin cycle. The cells of all species contained glycogen particles and electron-dense particles in their cytoplasm as visualized by electron microscopy. In addition, the cells of one of the species (M. fagopyrum) contained intracytoplasmic membrane stacks. The discovery of these three new species and their growth characteristics expands the known diversity of verrucomicrobial methanotrophs and shows that they are present in many more ecosystems than previously assumed.  相似文献   

15.
For simultaneous identification of members of the betaproteobacterial order “Rhodocyclales” in environmental samples, a 16S rRNA gene-targeted oligonucleotide microarray (RHC-PhyloChip) consisting of 79 probes was developed. Probe design was based on phylogenetic analysis of available 16S rRNA sequences from all cultured and as yet uncultured members of the “Rhodocyclales.” The multiple nested probe set was evaluated for microarray hybridization with 16S rRNA gene PCR amplicons from 29 reference organisms. Subsequently, the RHC-PhyloChip was successfully used for cultivation-independent “Rhodocyclales” diversity analysis in activated sludge from an industrial wastewater treatment plant. The implementation of a newly designed “Rhodocyclales”-selective PCR amplification system prior to microarray hybridization greatly enhanced the sensitivity of the RHC-PhyloChip and thus enabled the detection of “Rhodocyclales” populations with relative abundances of less than 1% of all bacteria (as determined by fluorescence in situ hybridization) in the activated sludge. The presence of as yet uncultured Zoogloea-, Ferribacterium/Dechloromonas-, and Sterolibacterium-related bacteria in the industrial activated sludge, as indicated by the RHC-PhyloChip analysis, was confirmed by retrieval of their 16S rRNA gene sequences and subsequent phylogenetic analysis, demonstrating the suitability of the RHC-PhyloChip as a novel monitoring tool for environmental microbiology.  相似文献   

16.
The melting of permafrost and its potential impact on CH4 emissions are major concerns in the context of global warming. Methanotrophic bacteria have the capacity to mitigate CH4 emissions from melting permafrost. Here, we used quantitative PCR (qPCR), stable isotope probing (SIP) of DNA, denaturing gradient gel electrophoresis (DGGE) fingerprinting, and sequencing of the 16S rRNA and pmoA genes to study the activity and diversity of methanotrophic bacteria in active-layer soils from Ellesmere Island in the Canadian high Arctic. Results showed that most of the soils had the capacity to oxidize CH4 at 4°C and at room temperature (RT), but the oxidation rates were greater at RT than at 4°C and were significantly enhanced by nutrient amendment. The DGGE banding patterns associated with active methanotrophic bacterial populations were also different depending on the temperature of incubation and the addition of nutrients. Sequencing of the 16S rRNA and pmoA genes indicated a low diversity of the active methanotrophic bacteria, with all methanotroph 16S rRNA and pmoA gene sequences being related to type I methanotrophs from Methylobacter and Methylosarcina. The dominance of type I methanotrophs over type II methanotrophs in the native soil samples was confirmed by qPCR of the 16S rRNA gene with primers specific for these two groups of bacteria. The 16S rRNA and pmoA gene sequences related to those of Methylobacter tundripaludum were found in all soils, regardless of the incubation conditions, and they might therefore play a role in CH4 degradation in situ. This work is providing new information supporting the potential importance of Methylobacter spp. in Arctic soils found in previous studies and contributes to the limited body of knowledge on methanotrophic activity and diversity in this extreme environment.Permafrost regions occupy approximately 22% of the exposed land area of the Northern Hemisphere (63). In the past 100 years, the average temperatures in the arctic regions have increased at almost twice the average global rate (25). The melting of permafrost is one of the most important impacts of global warming on these high-latitude environments, and theoretical modeling suggests that as much as 90% of the permafrost could thaw by the end of the 21st century (29). While it has been generally reported that 15% of the total soil organic carbon is stocked in permafrost (42), a recent estimate indicates that it contains as much as 50% of the global belowground organic carbon pool (53). Carbon stocked in permafrost is now regarded as one of the most important carbon-climate feedbacks because of the size of the carbon pool and the intensity of climate change at high latitudes (46, 47). The presence of these large amounts of carbon in permafrost is raising serious concerns whether melting permafrost, and the resulting increase in microbial activity, might be a source of extensive emissions of the greenhouse gases carbon dioxide and methane (CH4) to the atmosphere. The actual emissions of CH4 from soils of high latitudes have been estimated to represent about 25% of the emissions from natural sources (19). Methane, which is 25 times more potent than carbon dioxide as a greenhouse gas (25), is produced by methanogenic archaea under anaerobic conditions. These microorganisms are known to inhabit permafrost environments (44, 49), and their capacity to produce methane at cold temperatures has been reported (20, 35, 44, 56). Their methanogenic activity is expected to increase as permafrost soil temperature increases (20). Moreover, large amounts of methane are stocked as methane hydrates in permafrost at an average depth of several hundred meters (33). Methane is also found in permafrost layers near the surface and could potentially be liberated to the atmosphere as permafrost melts (44).Methane can be oxidized in aerobic zones by aerobic methanotrophic bacteria or in anaerobic zones by anaerobic methanotrophic archaea (for a recent review, see reference 27). Anaerobic methane oxidizers were not covered in the context of this study, which focused exclusively on aerobic methanotrophs. These bacteria utilize methane as the sole carbon and energy source through the activity of the enzyme methane monooxygenase (MMO). Most known aerobic methanotrophs are divided into two major groups (type I and type II) based on phylogeny and carbon assimilation pathways (5). Type I methanotrophs, also known as Gammaproteobacteria methanotrophs (6) belong to the family Methylococcaceae within the Gammaproteobacteria subdivision, while type II methanotrophs (Alphaproteobacteria methanotrophs) belong to the family Methylocystaceae in the Alphaproteobacteria subdivision (5). Because of their capacity to oxidize methane, aerobic methanotrophs can significantly reduce methane emissions to the atmosphere and play an important role in the global methane cycle (12, 22). Methanotrophic activity has been observed in cold environments, and methanotrophs might contribute to the reduction of methane emissions from melting permafrost. Aerobic methanotrophic bacteria from cold environments have been reviewed in detail elsewhere (54).Most studies addressing methanotrophs from cold environments were conducted on soils from very few sites located in Northern Europe and Siberia (14, 30, 31, 40, 56-58), while methanotrophic bacterial populations in soils from the Canadian high Arctic remain mostly unexplored (41). In addition, most of these studies were conducted at low latitudes, and the pool of knowledge concerning the activity and diversity of methanotrophic bacterial populations in high Arctic soils is limited. The question being addressed in this study is whether there are active methanotrophs in the active-layer soil in the high Arctic. Therefore, the present work had two objectives: (i) to evaluate the methane oxidation capacity of three active-layer soils from the Canadian high Arctic under various incubation conditions and (ii) to identify and characterize the diversity of the active methanotrophs in these soils using stable isotope probing (SIP) of DNA (DNA-SIP) and sequencing of the 16S rRNA and pmoA genes. With this work, we identify for the first time active methanotrophs in high Arctic soils through the use of DNA-SIP.  相似文献   

17.
Numeric abundance, identity, and pH preferences of methanotrophic Gammaproteobacteria (type I methanotrophs) inhabiting the northern acidic wetlands were studied. The rates of methane oxidation by peat samples from six wetlands of European Northern Russia (pH 3.9–4.7) varied from 0.04 to 0.60 μg CH4 g?1 peat h?1. The number of cells revealed by hybridization with fluorochrome labeled probes M84 + M705 specific for type I methanotrophs was 0.05–2.16 × 105 cells g?1 dry peat, i.e., 0.4–12.5% of the total number of methanotrophs and 0.004–0.39% of the total number of bacteria. Analysis of the fragments of the pmoA gene encoding particulate methane monooxygenase revealed predominance of the genus Methylocystis (92% of the clones) in the studied sample of acidic peat, while the proportion of the pmoA sequences of type I methanotrophs was insignificant (8%). PCR amplification of the 16S rRNA gene fragments of type I methanotrophs with TypeIF-Type IR primers had low specificity, since only three sequences out of 53 analyzed belonged to methanotrophs and exhibited 93–99% similarity to those of Methylovulum, Methylomonas, and Methylobacter species. Isolates of type I methanotrophs obtained from peat (strains SH10 and 83A5) were identified as members of the species Methylomonas paludis and Methylovulum miyakonense, respectively. Only Methylomonas paludis SH10 was capable of growth in acidic media (pH range for growth 3.8–7.2 with the optimum at pH 5.8–6.2), while Methylovulum miyakonense 83A5 exhibited the typical growth characteristics of neutrophilic methanotrophs (pH range for growth 5.5–8.0 with the optimum at pH 6.5–7.5).  相似文献   

18.
Mono Lake is an alkaline hypersaline lake that supports high methane oxidation rates. Retrieved pmoA sequences showed a broad diversity of aerobic methane oxidizers including the type I methanotrophs Methylobacter (the dominant genus), Methylomicrobium, and Methylothermus, and the type II methanotroph Methylocystis. Stratification of Mono Lake resulted in variation of aerobic methane oxidation rates with depth. Methanotroph diversity as determined by analysis of pmoA using new denaturing gradient gel electrophoresis primers suggested that variations in methane oxidation activity may correlate with changes in methanotroph community composition.  相似文献   

19.
Methanotrophic bacteria have a unique ability to utilize methane as their carbon and energy sources. Therefore, methanotrophs play a key role in suppressing methane emissions from different ecosystems and hence in alleviating the global climate change. Despite methanotrophs having many ecological, economical and biotechnological applications, little is known about this group of bacteria in Al-Ahsa. Therefore, the main objective of the current work was to expand our understanding of methane oxidizing bacteria in Al-Ahsa region. The specific aim was to describe a methanotrophic strain isolated from Al-Bohyriya well, Al-Ahsa using phenotypic, genotypic (such as 16S rRNA and pmoA gene sequencing) and phylogenetic characterization. The results indicated that the strain belongs to the genus Methylomonas that belongs to Gammaproteobacteria as revealed by the comparative sequence analysis of the 16S rRNA and pmoA genes. There is a general agreement in the profile of the phylogenetic trees based on the sequences of 16srRNA and pmoA genes of the strain BOH1 indicating that both genes are efficient taxonomic marker in methanotrophic phylogeny. The strain possesses the particulate but not the soluble methane monooxygenase as a key enzyme for methane metabolism. Further investigation such as DNA:DNA hybridization is needed to assign the strain as a novel species of the genus Methyomonas and this will open the door to explore the talents of the strain for its potential role in alleviating global warming and biotechnological applications in Saudi Arabia such as bioremediation of toxic by-products released in oil industry. In addition, the strain enhances our knowledge of methanotrophic bacteria and their adaptation to desert ecosystems.  相似文献   

20.
The distribution and abundance of sulfate-reducing bacteria (SRB) and eukaryotes within the upper 4 mm of a hypersaline cyanobacterial mat community were characterized at high resolution with group-specific hybridization probes to quantify 16S rRNA extracted from 100-μm depth intervals. This revealed a preferential localization of SRB within the region defined by the oxygen chemocline. Among the different groups of SRB quantified, including members of the provisional families “Desulfovibrionaceae” and “Desulfobacteriaceae,” Desulfonema-like populations dominated and accounted for up to 30% of total rRNA extracted from certain depth intervals of the chemocline. These data suggest that recognized genera of SRB are not necessarily restricted by high levels of oxygen in this mat community and the possibility of significant sulfur cycling within the chemocline. In marked contrast, eukaryotic populations in this community demonstrated a preference for regions of anoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号