首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two experiments were conducted to investigate methods for aspirating oocytes from immature preovulatory follicles in the mare. In Experiment 1, the ovary was manipulated per rectum and the follicle was punctured by a needle introduced through the flank. Suction was provided by either a syringe or by a vacuum pump connected to the needle via tubing. The preovulatory follicle was aspirated when it reached a diameter of 32 +/- 2 mm (Group A); 37 +/- 2 mm (Group B); or 42 +/- 2 mm (Group C). There was no significant difference in oocyte recovery rates between the two methods (7 24 vs 3 19 ). Oocyte recovery rates were higher for Groups B and C (5 14 and 4 12 , respectively) than for Group A (1 17 ; P < 0.05). In Experiment 2, the ovary was held against the internal abdominal wall by the hand inserted into the abdomen via a vaginal incision, and the follicle was flushed after aspiration. Recovery rates were 9 13 (69%) for mares treated with human chorionic gonadotrophin (hCG) and 15 21 (71%) for unstimulated mares. This difference was not significant. The oocyte recovery rate for unstimulated follicles (average diameter 39.7 mm) in Experiment 2 was significantly higher than those for Group B and Group C in Experiment 1 (P < 0.05).  相似文献   

2.
The aim of this study was to compare the efficacy of three approaches for recovering equine oocytes via transvaginal ultrasound-guided follicular aspiration. Fourteen mares were used as oocyte donors during the spring transition period and physiologic breeding season, and 11 mares were bred for use as oocyte donors during early gestation. In all mares, large (>20 mm) and small (10–20 mm) follicles were aspirated in eight rounds every 10–11 days. In each of the four rounds during the transition period, half the mares received 12.5 mg eFSH once daily for 4 days prior to aspiration. For each of the four rounds during the cycling season, half the mares received 12.5 mg eFSH twice daily for 3 days prior to aspiration. Pregnant mares were aspirated on days 25, 40 and 55 of gestation and received no eFSH. There were more large (>20 mm) follicles in cycling controls (2.25 ± 0.27) and cycling FSH-treated (2.64 ± 0.27) mares than in transitional FSH-treated mares (1.18 ± 0.27). The number of oocytes recovered from small (10–20 mm) follicles varied by mare (P < 0.05) and averaged 1.08 ± 0.22 per aspiration for transitional mares and 1.23 ± 0.22 per aspiration for cycling mares (P > 0.1). The number of oocytes per aspiration from large follicles was greater in cycling FSH-treated mares (0.46 ± 0.09) than in transitional control mares (0.11 ± 0.09). In pregnant mares, more large follicles were present at day 25 than at any other time, and the number of oocytes per aspiration from large follicles was greater at day 25 (0.73 ± 0.16) than at day 55 (0.04 ± 0.18). When compared across all seasons and treatments, the day 25 pregnant mares yielded the greatest number of oocytes per aspiration (2.91 ± 0.66 per mare).  相似文献   

3.
We wished to compare cumulus oocyte complex (COC) recovery and follicle development after single and repeated ultrasound-guided transvaginal follicle aspiration (aspiration). Aspirations were performed in Holstein-Friesian heifers every once weekly (every 7 d; n = 12) or twice weekly (every 3 or 4 d; n = 6) starting on Days 3 or 4 of the estrous cycle (estrus = Day 0) and continuing for 4 wk. During each session, all visible follicles > 2 mm were aspirated using an 7.5 MHz transducer to guide an 18 ga x 60 cm single lumen needle and applying 50 mm Hg vacuum which generated 25 mL/min. The COC's harvested from each follicle were counted and classified into 4 categories. Post-aspiration follicle wave emergence was traced by daily ultrasound examinations. A total of 1410 follicles were aspirated during 96 sessions, yielding 632 (45%)oocytes. There was no difference in average COC/follicle recovered between the single vs the repeated aspiration treatment. However, ovaries of heifers subjected to two aspirations per week yielded more follicles (17.2 +/- 5.7 vs 12.4 +/- 6.1; P < 0.01) and COC's (7.7 +/- 4.5 vs 5.4 +/- 3.7; P < 0.01) per session than those subjected to a single aspiration. Ovaries of heifers subjected to twice weekly aspirations at 4-d intervals resulted in a higher recovery rate (51.1 vs 38.6%), yielded more COC's (9.3 +/- 4.7 vs 6.2 +/- 3.8) and a higher number of viable COC's recovered per session (7.6 +/- 3.8 vs 5.2 +/- 3.3) than those aspirated every 3 d, all P < 0.01. Aspiration-induced follicle waves were indicated by an increased number of follicle > or = 4 mm seen within 2 d of the procedure. We conclude that follicle aspiration appears to induce and synchronize follicle waves, and when it is done twice a week it is associated with higher number of harvestable follicles and more oocytes recovered than when done once a week. These results can be attributed to the aspiration of a newly recruited pull of follicles 3 or 4 d after the first aspiration and before the establishment of follicular dominance and regression of subordinate follicles.  相似文献   

4.
In vitro embryo production is not yet successful in the horse, largely due to low rates of fertilization in vitro. However, methods to produce embryos from isolated oocytes have been developed. Oocytes may be recovered from living mares by aspiration of the dominant preovulatory follicle by trans-abdominal puncture, and from both preovulatory and immature follicles by trans-vaginal ultrasound-guided puncture. Transfer of in vivo-matured oocytes to the oviducts of bred recipient mares has resulted in good pregnancy rates (75-85%). Little work has been done on transfer of horse oocytes matured in vitro. Recovery rates of immature oocytes from mares in vivo are lower than those for cattle. In addition, work on oocytes recovered from horse ovaries post-mortem has shown that horse oocytes from smaller (< 20 mm diameter) viable follicles may not yet be meiotically competent. Methods for in vitro fertilization and for obtaining adequate numbers of competent immature oocytes from the mare must be developed before in vitro embryo production can become a useful clinical and research procedure in the horse.  相似文献   

5.
Cloned animals possess mitochondria derived from the host ooplast, which typically differ genetically from those of the donor. This is of special concern to horse breeders, as maternal lines are prized and athletic performance is a key factor in genetic value. To evaluate the feasibility of producing mitochondrial-identical cloned foals, we collected oocytes from immature follicles of two mares, BL and SM, maternally related to the donor stallion. In vitro matured, enucleated oocytes were treated with roscovitine-synchronized donor cells and blastocysts were transferred transcervically to recipient mares. In Mare BL, 10 aspiration sessions yielded 45 oocytes, of which 12 matured and seven were successfully recombined. One blastocyst was produced, which did not yield a pregnancy. In Mare SM, three aspiration sessions yielded 53 oocytes, of which 27 successfully recombined. These were assigned to either Scriptaid or Scriptaid plus Vitamin C treatments for the first 12 to 16 hours of embryo culture. Two blastocysts were produced from each treatment. One pregnancy was established after transfer from the Scriptaid treatment. This resulted in a viable foal whose genomic DNA and mitochondrial DNA matched to those of the donor animal. These results indicate that production of mitochondrial-identical cloned foals can be achieved using oocyte recovery from a very small number of selected mares. Despite mitochondrial homogeneity, the results varied with mare; Mare BL yielded both significantly fewer oocytes per aspiration session (P < 0.001) and significantly fewer reconstructed oocytes per oocyte recovered ( P < 0.001) than did Mare SM.  相似文献   

6.
Ovum pick-up (OPU) by transvaginal ultrasound guided aspiration (TUGA) is a procedure applied in equine-assisted reproduction programs such as oocyte transfer and in vitro embryo production. Despite a large number of studies reporting that it is a repeatable and safe technique, little information is available about the effect of repeated punctures on fertility of mares. Moreover, even if flushing follicles improves the oocyte recovery rate, to our knowledge the efficiency of flushing estrous and diestrous follicles has not been evaluated. The aims of the present study were (1) evaluate if repeated TUGAs negatively effects fertility and (2) investigate the influence of flushing the follicular cavity (as compared to aspiration only-unflushed) on the recovery rate from follicles of different sizes and in different stages of the estrous cycle. Seventy-six TUGAs were carried out on 20 mares during the breeding season; 153 follicles were aspirated and 31 oocytes were recovered (20.3% per follicle; 40.8% per TUGA attempt). Of the 76 aspirations, 52 were carried out during estrus and 24 in diestrus. Flushing the follicular cavity significantly increased (P < 0.01) the oocyte recovery rate from estrous follicles (13/28, 46.4% flushed versus 3/24, 12.5% aspirated only) but not (P > 0.05) from diestrous follicles of different diameters (3/30, 10% flushed versus 2/36, 5.6% aspirated only for follicles <2 cm in diameter; 6/20, 30% flushed versus 4/15, 26.7% aspirated only for follicles > or =2 cm in diameter). Mares underwent ultrasonic examinations after every aspiration and no alteration was found with the exception of two mares in which the corpus luteum (CL) did not form following aspiration of estrous follicle. Of the 20 mares involved in this study, 10 were artificially inseminated with fresh semen from a single fertile stallion at the first spontaneous heat following the previous aspiration. Of the 10 inseminated mares, 7 were found to be pregnant 16, 30 and 50 days after artificial insemination (AI), indicating that repeated TUGAs did not adversely affect fertility.  相似文献   

7.
The effect of frequency of transvaginal follicular aspiration on oocyte yield and subsequent superovulatory response was studied in 2 experiments. In Experiment 1, 32 primiparous Hereford x Friesian cows were assigned to 4 treatments (n = 8 per treatment). Oocyte recovery was carried out once a week for 12, 8, 4 or 0 (control) wk. Embryo recovery for all animals was 7 wk after the completion of the aspiration schedules. In Experiment 2, the effects of oocyte recovery once or twice a week (n = 8 per treatment; control n = 18) for 12 wk and response to superovulation 4 wk after the last aspiration were compared using nulliparous purebred Simmental heifers. Increasing the period of once weekly aspirations from 4 to 12 wk (Experiment 1) did not affect the number of follicles observed per session (mean +/- SEM; 10.0 +/- 0.82) or aspirated (7.8 +/- 0.71), but the recovery rate of oocytes from follicles aspirated was greater for donors aspirated for either 4 or 8 wk than for 12 wk (32.3 +/- 3.73 vs 28.4 +/- 2.61 vs 20.1 +/- 2.13 %; P < 0.05). Following the last aspiration and prior to commencing superovulatory procedures, estrus or estrous activity was observed in 7 8 , 8 8 , 7 8 and 6 8 of the animals aspirated over 12, 8, 4 or 0 wk, respectively. Subsequent superovulatory responses and in vivo embryo recoveries were similar for all aspiration treatments and for control animals. Changing the frequency of oocyte recovery from once to twice weekly (Experiment 2) did not affect the numbers of follicles observed (9.1 +/- 0.63 vs 8.3 +/- 0.85), follicles aspirated (5.9 +/- 0.56 vs 6.2 +/- 0.69), oocytes recovered (1.7 +/- 0.27 vs 1.9 +/- 2.0) per session or the oocyte recovery rate (29.4 +/- 2.4 vs 30.4 +/- 2.4 %); nor was there any effect of frequency of aspiration on subsequent superovulatory response and embryo recovery. In conclusion, increasing the period of aspiration from 4 to 12 wk and the frequency from once to twice a week over 12 wk did not reduce the number of follicles observed or aspirated, or number of oocytes recovered per donor per session. Subsequent estrous cyclicity and responses to superovulation were unaffected by the periods or frequencies of oocyte recovery examined here.  相似文献   

8.
We evaluated the relationship between follicle size and oocyte recovery (OR) using ultrasound-guided follicle aspiration. Thirty Holstein cows were subjected to OR without gonadotrophic therapy. Oocytes were recovered two to four times from each cow in a total of 67 aspiration sessions. Ovarian follicles with diameters < or =4 mm and >4 mm were aspirated in separated groups. Recovered oocytes from each group were kept separate and submitted to in vitro maturation, fertilization, and culture to the blastocyst stage. A total of 430 follicles were aspirated, of which 154 (35.8%) were from follicles >4 mm and 276 (64.2%) were from follicles < or =4 mm. Seventy-seven oocytes (50%) were recovered from follicles >4 mm and 200 (72.2%) were from follicles < or =4 mm. Nineteen blastocysts were obtained from follicles >4 mm, whereas 45 blastocysts were obtained from follicles < or =4 mm. Recovery rate was greater (P<0.01) in follicles < or =4 mm. Oocyte quality, cleavage rate and blastocyst development did not differ between different follicle sizes. Routine aspiration of small follicles (< or =4 mm) could increase the number of oocytes available for in vitro development.  相似文献   

9.
Crossbred beef x dairy calves were randomly allocated at 3 wk of age to different gonadotropin treatment regimens for stimulation of follicle development and induction of oocyte maturation in vivo. Follicular responses were assessed laparoscopically, and oocytes were aspirated for assessment of maturational state or for in vitro fertilization (IVF) and culture to determine developmental capacity. Follicle-stimulating Hormone (FSH), administered in a single subcutaneous injection together with a low dosage of PMSG, was as effective as the same total dosage of FSH administered in 6 injections over a 3-d period. Without accompanying PMSG, this dose of FSH was ineffective in stimulating follicle development. The mean number of preovulatory follicles (> 5mm, with hyperemic appearance) doubled with each successive stimulation at 3-wk intervals, reaching 35 follicles per calf at 9 wk of age. Oocyte yields ranged from 55 to 81% of follicles aspirated, and did not differ significantly among age, FSH regimen and oocyte maturation stimulus. A combination of LH + FSH was more effective in stimulating cumulus cell expansion than LH by itself (73 vs 22% of recovered oocyte-cumulus cell complex (OCC) respectively; P<0.05). Of 33 unselected immature oocytes (cumulus unexpanded) subjected to in vitro maturation (IVM) and IVF, 30% developed to blastocysts during co-culture with bovine oviduct epithelial cells, which was not significantly different from 25% of 36 oocytes from adult ovaries which reached the blastocyst stage under similar conditions. The results indicate that follicle responses of calf ovaries to FSH stimulation increase progressively from 3 to 9 wk of age, and that oocytes recovered laparoscopically from these follicles produce blastocysts in culture at rates similar to oocytes from adult cattle ovaries collected at slaughter. The approach offers promise for embryo production from donor calves of superior genetic merit for embryo transfer, thereby enhancing the rate of genetic gain above that attainable by conventional breeding or by embryo transfer in adult cattle.  相似文献   

10.
Objectives of the experiment were to determine the effects of mare age and gonadotropin treatments on dominant follicle vascularity, ovarian blood flow and dominant follicle growth and to associate follicular vascularity with oocyte developmental capacity. Growing follicles >30mm from young (4-9 years) and old (>20 years) mares were assessed for blood flow using color Doppler ultrasonography before maturation induction with recombinant equine LH (eLH) and immediately prior to oocyte collection at 20-24h after eLH. Pulsed Doppler was used to obtain resistance indices of ovarian arteries ipsilateral to preovulatory follicles. For eFSH-treated estrous cycles, eFSH administration was started after detection of a cohort of follicles ≥20 to <25mm and continued until a follicle >30mm. Oocytes were harvested using transvaginal, ultrasonic-guided aspirations and cultured and injected with sperm at 40±1h after eLH. Presumptive zygotes were incubated, and rates of cleavage (≥2 cells) and blastocyst formation were obtained. Embryos were transferred nonsurgically into recipients' uteri, and pregnancy rates were assessed. Vascularity (number of color pixels per total pixels) was higher (P=0.003) in the follicles of old compared to young mares, with no significant interaction of eFSH or eLH. Effects of eFSH and time from eLH on follicle vascularity were not significant. The vascularity of follicles associated with oocytes that did compared to those that did not form blastocysts was greater (P=0.048), although follicular vascularity was less (P=0.02) for follicles associated with oocytes that did compared to those that did not develop into pregnancies. Resistance indices were not different for age, eFSH treatment, time after eLH administration and oocyte developmental potential. Growth of the dominant follicle was not associated with vascularity, although advanced age tended (P=0.09) to have a negative effect on follicle growth.  相似文献   

11.
Objectives of the present study were to use oocyte transfer: 1) to compare the developmental ability of oocytes collected from ovaries of live mares with those collected from slaughterhouse ovaries; and 2) to compare the viability of oocytes matured in vivo, in vitro, or within the oviduct. Oocytes were collected by transvaginal, ultrasound-guided follicular aspiration (TVA) from live mares or from slicing slaughterhouse ovaries. Four groups of oocytes were transferred into the oviducts of recipients that were inseminated: 1) oocytes matured in vivo and collected by TVA from preovulatory follicles of estrous mares 32 to 36 h after administration of hCG; 2) immature oocytes collected from diestrous mares between 5 and 10 d after aspiration/ovulation by TVA and matured in vitro for 36 to 38 h; 3) immature oocytes collected from diestrous mares between 5 and 10 d after aspiration/ovulation by TVA and transferred into a recipient's oviduct <1 h after collection; and 4) im mature oocytes collected from slaughterhouse ovaries containing a corpus luteum and matured in vitro for 36 to 38 hours. Embryo development rates were higher (P < 0.001) for oocytes matured in vivo (82%) than for oocytes matured in vitro (9%) or within the oviduct (0%). However, neither the method of maturation nor the source of oocytes affected (P > 0.1) embryo development rates after the transfer of immature oocytes.  相似文献   

12.
In the mare, rates of fertilization and development are low in oocytes matured in vitro, and a closer imitation of in vivo conditions during oocyte maturation might be beneficial. The aims of the present study were, therefore, to investigate whether (1) equine oocytes can be matured in vitro in pure equine preovulatory follicular fluid, (2) priming of the follicular fluid donor with crude equine gonadotrophins (CEG) before aspiration of preovulatory follicular fluid promotes the in vitro maturation rate, (3) the in vitro maturation rate differs between oocytes aspirated during estrus and those aspirated again 8 days after the initial follicular aspiration, and (4) high follicular concentrations of meiosis activating sterols (MAS) are beneficial for in vitro maturation of equine oocytes. During estrus, 19 pony mares were treated with 25 mg CEG. After 24 h (Al) and again after 8 days (A2), all follicles >4mm were aspirated and incubated individually for 30 h in the following culture media: standard culture medium (SM), preovulatory follicular fluid collected before CEG containing low MAS concentrations (FF1), preovulatory follicular fluid collected before CEG containing high MAS concentrations (FF2) or preovulatory follicular fluid collected 35 h after administration of CEG containing low MAS concentrations (FF3). Cumulus expansion rate was significantly affected by culture medium. The overall nuclear maturation rate was significantly higher for oocytes collected at A1 (67%) than for oocytes collected at A2 (30%). For oocytes collected at A1, the maturation rates were 71% (FF1), 61% (FF2), 79% (FF3) and 56% (SM). An electrophoretic protein analysis of the culture media revealed the presence of a 200-kDa protein in FF3. The results demonstrate that (1) equine oocytes can be matured during culture in pure equine preovulatory follicular fluid, (2) preovulatory follicular fluid collected after gonadotrophin-priming seems superior in supporting in vitro maturation than standard culture medium, (3) oocytes aspirated 8 days after a previous aspiration are less competent for in vitro maturation than oocytes recovered during the initial aspiration, and (4) the regulation of meiotic resumption during in vitro culture of equine oocytes might be related to the presence of a 200-kDa protein.  相似文献   

13.
Current in vitro culture systems may not be adequate to support maturation, fertilization and embryo development of calf oocytes. Thus, we initiated a study to investigate an alternative method of assessing oocyte competence in vivo, initially using oocytes from adults. Experiment 1 was done to determine if follicle puncture would alter subsequent follicle development, ovulation and CL formation. In control (no follicle puncture, n = 3) and treated (follicle puncture, n = 3) heifers, ultrasound-guided transvaginal follicle aspiration was used to ablate all follicles > or = 5 mm at random stages of the estrous cycle to induce synchronous follicular wave emergence among heifers; PGF2 alpha was given 4 d later. Three days after PGF2 alpha, the preovulatory follicle in treated heifers was punctured with a 25-g needle between the exposed and nonexposed portions of the follicular wall, and 200 microL of PBS were infused into the antrum. There was no significant difference between control and treated heifers for mean diameter of the dominant follicle prior to ovulation, the interval to ovulation following PGF2 alpha, or first detection and diameter of the CL. Experiment 2 was designed to assess multiple embryo production following interfollicular transfer of oocytes (i.e., transfer of multiple oocytes from donor follicles to a single recipient preovulatory follicle). Follicular wave emergence was synchronized among control (no follicle puncture, n = 5), oocyte recipient (n = 7) and oocyte donor (n = 5) heifers as in Experiment 1. In control and oocyte recipient heifers, a norgestomet ear implant was placed at the time of ablation and removed 4 d later, at the second PGF2 alpha treatment. In oocyte donor heifers, FSH was given the day after ablation, and, 4 d later, oocytes were collected by transvaginal follicle aspiration, pooled and placed in holding medium. Five or 6 oocytes were loaded into the 25-g needle of the follicle infusion apparatus with < or = 200 microL of transfer medium. Puncture of the preovulatory follicle of recipient heifers was done as in Experiment 1. Immediately thereafter, LH was given to control and oocyte recipient heifers, but only the recipients were inseminated. Ovarian function was assessed by transrectal ultrasonography and control and oocyte recipient heifers were sent to the abattoir 2 or 3 d after ovulation, where excised oviducts were flushed. The interval between LH administration and ovulation (33 to 36 h) was highly synchronous within and among control and oocyte recipient heifers. Four of 5 (80%) ova were collected from controls and 16 of a potential 43 (37%) ova/embryos were recovered from oocyte recipients; 8 embryos from 3 heifers. Thus, the gamete recovery and follicular transfer procedure (GRAFT) did not alter ovulation or subsequent CL formation, and resulted in the recovery of multiple ova/embryos in which a total of 19 oocytes yielded as many as 8 early embryos, a 42% embryo production rate.  相似文献   

14.
Transvaginal ultrasound-guided follicular aspiration was conducted repeatedly in 5 cyclic mares. Three techniques were used and the aspirations were performed either > or = 23 d apart (A1, B1, C1) or 6 d apart (A2, B2,C2). During the A1 and A2 aspirations, the follicular cavity was flushed manually 8 to 10 times with flushing medium-filled (60 ml) syringes, while an electrical aspiration pump was used for the B1, B2, C1 and C2 aspirations. Prior to aspirations C1 and C2, the mares were treated daily with porcine FSH (100 mg, im) for 4 d. Aspiration was conducted 24 h after the last FSH injection. A total of 212 follicles with diameters varying between 5 and 23 mm was aspirated. The oocyte recovery rate was significantly higher (P = 0.004) from aspirations conducted with a > or = 23-d interval (35.8%) than from those aspirated 6 d after the previous aspiration (18.4%). Mode of evacuation and flushing (pump or syringe) and FSH treatment of the mare had no detectable effect on the oocyte recovery rate or on the cumulus dimensions of the aspirated oocytes. More than 80 % of the oocytes were at the germinal vesicle or diakinesis stage.  相似文献   

15.
A series of experiments was conducted to develop a procedure for consistent, repeatable collection of oocytes from the preovulatory follicle of the mare. In one experiment, in situ follicular aspiration with a needle and syringe was performed on 19 mares. From 37 aspirations, four oocytes were recovered (10% recovery rate). In a second experiment, ovaries were visualized via standing flank laparotomy during which two different aspiration techniques were used. Use of a needle and syringe as in the first experiment resulted in successful oocyte recovery in one of seven (14%) attempts. Aspiration via a continuous irrigation vacuum system (CIV), developed for use during laparotomy, resulted in collection of oocytes from six of 10 (60%) attempts. In the third experiment, oocytes were recovered from seven of 18 (38%) attempts at in situ follicular aspiration using a double-lumen needle attached to the CIV. In each experiment, some mares were subjected to stimulation of follicular maturation by exogenous hormones. Oocyte recovery was significantly increased in treated mares as compared with nontreated mares. Results indicate that collection of equine follicular oocytes by in situ aspiration is possible with moderate success. Oocytes apparently are not physically damaged by the procedure, as most retained either the corona radiata or the entire cumulus cell mass.  相似文献   

16.
The objectives were to describe the ultrastructure of equine oocytes aspirated from small and preovulatory follicles, and to relate the ultrastructural features to follicle size and follicular fluid steroid concentrations. Mares were examined every second day by transrectal ultrasonography, and follicles measuring ≤30 mm were aspirated (in vivo) using a 20-cm-long 12-gauge needle through the flank. Following slaughter, both large and small follicles were aspirated (in vitro) from six mares. The oocytes were isolated under a stereomicroscope and processed for transmission electron microscopy, and the follicular fluid was assayed for progesterone (P4) amd estradiol-17β (E2). A total of 29 oocytes (32% recovery rate) were aspirated in vivo, and 15 oocytes were recovered in vitro. According to the stage of nuclear maturation, the oocytes could be divided into the following six categories: 1) the central oocyte nucleus (CON) stage, 2) the peripheral spherical oocyte nucleus (PON-I) stage, 3) the peripheral flattened oocyte nucleus (PON-II) stage, 4) the oocyte nucleus breakdown (ONBD) stage, 5) the metaphase I (M-I) stage, and 6) the metaphase II (M-II) stage. The maturation of the preovulatory follicle was reflected by alterations in the follicular fluid concentrations of steroid hormones. E2 was high in all preovulatory follicles, whereas P4 concentration exhibited a 10-fold increase during follicle maturation, particularly associated with the progression from M-I-to M-II-stage oocytes. The nuclear oocyte maturation included flattening of the spherical oocyte nucleus, followed by increasing undulation of the nuclear envelope, formation of the metaphase plate of the first meiotic division, and, finally, the extrusion of the first polar body and the subsequent formation of the metaphase plate of the second meiotic division. The cytoplasmic oocyte maturation changes comprised breakdown of the intermediate junctions between the cumulus cell projections and the oolemma, enlargement of the perivitelline space, the formation and arrangement of a large number of cortical granules immediately beneath the oolemma, the rearrangement of mitochondria from a predominantly peripheral distribution to a more central or semilunar domain, and the rearrangement of membrane-bound vesicles and lipid droplets from an even distribution to an often semilunar domain, giving the ooplasm a polarized appearance. It is concluded that the final equine oocyte maturation includes a series of well-defined nuclear and cytoplasmic changes that are paralleled by an increase in P4 concentration in the follicular fluid, whereas E2 concentration remains constantly high. © 1995 wiley-Liss, Inc.  相似文献   

17.
Equine oocytes (n = 537) were collected from slaughterhouse ovaries (n = 118 mares) by scraping the internal follicular wall. Preculture record was made of the appearance of oocyte investments (no cumulus, corona radiata only, compact cumulus, expanded cumulus), appearance of cytoplasm (homogeneous, condensed heterogeneous/fragmented), and nuclear maturation stages (germinal vesicle, germinal-vesicle breakdown, metaphase I, metaphase II, degenerated). There was no difference between follicles > 30 mm and follicles < or = 30 mm in the preculture frequency distribution among the 5 nuclear stages; 96% were at either the germinal vesicle or germinal-vesicle breakdown stages. Oocytes from follicles 5 to 30 mm were cultured in modified TCM-199 for 18, 24, 36 and 48 h. Postculture nuclear maturation classifications were immature (germinal vesicle, germinal-vesicle breakdown, and metaphase I), mature (metaphase II or secondary oocyte), and degenerated. The frequency distribution of oocytes among the 3 postculture maturation classifications changed (P < 0.05) at 18 h (15% mature oocytes), changed (P < 0.05) further at 24 h (55% mature oocytes), with no additional change for 36 or 48 h. The only preculture cytoplasm group that affected the postculture results was the heterogeneous/fragmentation group which had a high proportion of postculture degenerated oocytes (67%); however, only 4% of oocytes were in this group. Luteal status of the mare had an effect (P < 0.05) on the frequencies of the maturation classifications, but not enough to be useful in selecting oocytes. Consistency of the follicle and the type of oocyte investment did not alter significantly the maturation frequencies. The frequency of degenerated oocytes after culture was high under the following conditions: 1) diameter of the follicle from which the oocyte was selected was 5 to 10 mm (44% degenerated oocytes), 2) the largest follicle per pair of ovaries was < or = 10 mm (63%), and 3) the mare was pregnant (66%). These results were probably related to the reported high frequency of atretic follicles in the 5- to 10-mm population. In summary, oocytes from individual follicles < or = 10 mm or from follicles in which the largest follicle per mare was < or = 10 mm were the poorest candidates for in vitro maturation.  相似文献   

18.
We investigated factors that affect cumulus-oocyte complex (COC) morphology and oocyte developmental competence in subordinate follicles on different days after follicular wave emergence in beef heifers. In Experiment 1, heifers (n = 13) were assigned at random to COC aspiration during the growing/static (Days 1 to 3) or regressing (Day 5) phase of subordinate follicle development (follicular wave emergence = Day 0). Follicular wave emergence was induced by transvaginal ultrasound-guided follicular ablation, ovaries were collected at slaughter, all follicles > or = 2 mm except the dominant follicle were aspirated, and COC were microscopically evaluated for morphology. There was a greater percentage of COC with expanded cumulus layers on Day 5 (42.4%) than on Days 1 to 3 (2.2%). In Experiment 2, heifers (n = 64) at random stages of the estrous cycle had all follicles > or = 5 mm ablated and 4 d later, 2 doses of PGF were injected 12 h apart; heifers were monitored daily by ultrasonography for ovulation (Day 0 = follicular wave emergence). Heifers were assigned to the following time periods for oocyte collection from subordinate follicles: Days 0 and 1 (growing phase), Days 2, 3 and 4 (static phase), and Days 5 and 6 (regressing phase). Ovaries were individually collected at slaughter, and all follicles > or 2 mm except for the dominant follicle were aspirated. The COC were morphologically evaluated and then matured, fertilized and cultured in vitro. Expanded COC were more frequent during the regressing phase (53.4%) than the growing or static phase (14.4 and 17.8%, respectively; P < 0.05). While the proportions of COC with > or = 4 layers of cumulus cells and denuded oocytes were higher (P < 0.05) in the growing and static phases, the production of morulae was highest (P < 0.05) with COC collected from subordinate follicles during the regressing phase. In Experiment 3, heifers (n = 18) were assigned at random to oocyte collection from subordinate follicles 3 and 4 d (static phase) or 5 and 6 d (regressing phase) after follicular wave emergence. The heifers were monitored ultrasonically for ovulation (Day 0 = follicular wave emergence); COC were collected from all follicles (> or = 5 mm) except for the dominant follicle by transvaginal ultrasound-guided follicle aspiration 3 to 6 d later. Recovered oocytes were stained and examined microscopically to evaluate nuclear maturation. A higher proportion of oocytes collected on Days 5 and 6 showed evidence of nuclear maturation (50%) than on Days 3 and 4 (8.3%; P < 0.05). Results support the hypothesis that COC morphology and oocyte developmental competence change during the growing, static and regressing phases of subordinate follicle development.  相似文献   

19.
Ultrasound-guided follicular aspiration was performed on 29 Holstein-Friesian cows/heifers twice weekly at 3- to 4-d intervals over a period of 2 consecutive estrous cycles (total 42 d). For visualization of the ovaries and guidance of the aspiration needle, a 6.5 MHz fingertip probe on a 62 cm probe carrier was inserted into the vagina. The disposable aspiration needle was connected to a permanent rinse tubing system, thus ensuring minimum death of oocytes in the aspiration processs. After penetration of the vaginal wall, the needle was inserted into a follicle of the rectally fixed ovary. Cumulus oocyte complexes (COC) were aspirated at a pressure of 100 mm Hg. In the first experiment, the effect of an additional gonadotropin treatment 4 d prior to aspiration was investigated in 8 lactating cows. Following FSH-treatment, the number of aspirated follicles was higher (P < 0.05) than in the nontreated animals (10.6 +/- 0.7 vs 8.9 +/- 0.5). The number of recovered COC (7.0 +/- 0.6 vs 5.8 +/- 0.5), the recovery rate (COC per aspirated follicle) (66.6% vs 65.4%), the percentage of viable COC (56.8% vs 52.1%), the cleavage rate upon in vitro maturation and in vitro fertilization (56.7% vs 59.8%) as well as the rate of morula/blastocyst formation (3.8% vs 2.9%) were similar in both groups. In the second experiment, follicles were aspirated in 4 lactating cows, 6 dry cows, 4 pregnant cows (first 35 d of pregnancy), and 4 heifers. The average number of aspirated follicles and recovered COC was higher (P < 0.05) in the first 2 groups (10.6 +/- 0.6 and 9.3 +/- 0.7 follicles; 7.2 +/- 0.5 and 6.9 +/- 0.7 oocytes) than in trie 2 other treatment groups (7.3 +/- 0.5 and 8.1 +/- 0.5 follicles; 5.0 +/- 0.4 and 5.7 +/- 0.5 oocytes). The percentage of viable COC was higher (P < 0.05; 68.3%) in lactating animals than in all the other groups (49.7, 52.5 and 57.4%, respectively). Similarly, upon in vitro fertilization, cleavage rate was higher (P < 0.05; 63.4%) in lactating cows than in the other groups (43.7, 50.5, 55.1%, respectively). A total of 21.5, 22.7, 11.9 and 13.5%, respectively, in the 4 groups of the in vitro fertilized oocytes reached the morula and blastocyst stages. After transfer of a total of 48 embryos 22 pregnancies (45.8%) were established as detected on Day 65. We conclude that 1) repeated aspiration of viable COC at short intervals is possible, 2) additional FSH-treatment does not increase oocyte yields, and 3) viable blastocysts can be produced from cattle at various reproductive phases irrespective of the reproductive phase.  相似文献   

20.
There is a great variability in the success of horse oocyte maturation and fertilization among laboratories. This study was conducted to determine if the meiotic and developmental competence of horse oocytes could be dependent on the method of oocyte collection, i.e., aspiration of follicular fluid with a vacuum apparatus, or opening follicles and scraping the granulosa layer. Horse oocytes were recovered from abattoir ovaries by aspiration or scraping and classified as having compact (Cp), expanded (Ex), or partial (P) cumuli. In Experiment 1 (Part A in May and Part B in October), oocytes were fixed immediately after collection to assess whether the collection method influenced the initial chromatin configuration of oocytes. In Experiment 2, in vitro maturation rates of oocytes recovered by aspiration or scraping were compared. In Experiment 3, oocytes were matured in vitro and submitted to intracytoplasmic sperm injection (ICSI). Initial chromatin configuration differed according to collection method in that there was a significantly higher prevalence of diffuse chromatin within the germinal vesicle in oocytes recovered by scraping than in oocytes recovered by aspiration (29/87, 33% and 28/166, 17%, respectively; P < 0.01). Maturation of oocytes to metaphase II did not significantly differ between scraped and aspirated oocytes (56/101, 55.4 % vs. 65/106, 61.4%, respectively). The overall pronucleus formation rate after ICSI of oocytes recovered by scraping was not significantly different than that of oocytes recovered by aspiration (50/99, 52.6% vs. 50/85, 68.5 %, respectively); however, the rate of abnormal fertilization was significantly higher for oocytes collected by aspiration (14/73, 19% vs. 6/94, 6%, respectively; P <0.05). These results demonstrate that the collection method affects the population of recovered oocytes and may contribute to differences in results observed among laboratories working with horse oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号