首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of the present study was to determine the influence of chicken semen cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activities. Pooled semen from 10 Black Minorca roosters was used in the study. Semen samples were subjected to cryopreservation using the “pellet” method and dimethylacetamide (DMA) as a cryoprotectant. In the fresh and the frozen-thawed semen sperm membrane integrity (SYBR-14/propidium iodide (PI)), acrosomal damage (PNA-Alexa Fluor®488) and mitochondrial activity (Rhodamine 123) were assessed using flow cytometry. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma by spectrophotometry. All sperm characteristics evaluated using flow cytometry were affected by cryopreservation. After freezing-thawing, there was significant (P < 0.01) reduction in sperm membrane integrity, sperm acrosome integrity and mitochondrial activity. Following cryopreservation, MDA concentration significantly increased in chicken seminal plasma and spermatozoa (P < 0.01, P < 0.05). The CAT activity in seminal plasma significantly decreased (P < 0.05), while intracellular activity of this enzyme did not significantly change in frozen-thawed semen. In seminal plasma of frozen-thawed semen the significant increase (P < 0.01) in GPx activity was detected. Whereas GPx activity in spermatozoa remained statistically unchanged after thawing. The SOD activity significantly increased (P < 0.01) in cryopreserved seminal plasma with simultaneous decrease (P < 0.01) of its activity in cells. In conclusion, this is probably the first report describing the level of antioxidant enzymes in frozen-thawed avian semen. The present study showed that the activity of CAT, GPx and SOD in chicken semen was affected by cryopreservation, what increased the intensity of lipid peroxidation (LPO). Catalase appeared to play an important role in the sperm antioxidant defense strategy at cryopreservation since, opposite to SOD and GPx, its content was clearly reduced by the cryopreservation process. Change in the antioxidant defense status of the chicken spermatozoa and surrounding seminal plasma might affect the semen quality and sperm fertilizing ability.  相似文献   

2.
The present study was conducted to investigate spermatozoal membrane integrity, acrosome integrity, mitochondrial activity, and chromatin structure in fresh and frozen-thawed Canada goose (Branta canadensis) semen with the use of the flow cytometry. The experiment was carried out on ten, 2-year-old, Canada goose ganders. The semen was collected twice a week, by a dorso-abdominal massage method, then pooled and subjected to cryopreservation in straws, in a programmable freezing unit with the use of dimethyloformamide (DMF) as a cryoprotectant. Frozen samples were thawed in a water bath at 60 °C. The freezing procedure was performed ten times. For the cytometric analysis the fresh and the frozen-thawed semen was extended with EK extender to a final concentration of 50 million spermatozoa per mL. Sperm membrane integrity was assessed with SYBR-14 and propidium iodide (PI), acrosomal damage was evaluated with the use of PNA-Alexa Fluor®488 conjugate, mitochondrial activity was estimated with Rhodamine 123 (R123), and spermatozoal DNA integrity was measured by the sperm chromatin structure assay (SCSA). The cryopreservation of Canada goose semen significantly decreased the percentage of live cells, from 76.3 to 50.4% (P < 0.01). Moreover, we observed the significant decrease in the percentage of live spermatozoa with intact acrosomes (P < 0.01), but we did not detect significant changes in the percentage of live spermatozoa with ruptured acrosomes. However, after thawing 50% of Canada goose live spermatozoa retained intact acrosomes. Furthermore, the percentage of live spermatozoa with active mitochondria was significantly lower in the frozen-thawed semen than in the fresh semen (P < 0.05). Nevertheless, after thawing the mitochondria remained active in almost 50% of live cells. In the present study, we observed no changes in the percentage of sperm with fragmented DNA after freezing-thawing of Canada goose semen. In conclusion, the present study indicates that even the fresh Branta canadensis semen might have poor quality, the cryopreservation of its semen did not provoke spermatozoal DNA defragmentation and half of the spermatozoa retained intact acrosomes and active mitochondria after freezing-thawing.  相似文献   

3.
Efficient collection, freezing, reliable archiving of sperm, and re-derivation of mutant mice are essential components for large-scale mutagenesis programs in the mouse. Induced mutations (i.e. transgenes, targeted mutations, chemically induced mutations) in mice may cause inherited or temporary sterility, increase abnormal sperm values, or decrease fertility. One purpose of this study was to compare the effect(s) on fresh and frozen-thawed sperm quality, spermatozoa DNA integrity, unassisted in vitro fertility (IVF) rate, in vitro embryo development rate to blastocysts, and live-born offspring rates in non-ENU (control) animals and the F1-generation of N-ethyl-N-nitrosourea (ENU)-treated male mice (765 mg/kg C57BL6/J or 600 mg/kg 129S1/SvImJ total dose). The second purpose was to determine the effect(s) of parental oocyte donor strain on in vitro fertilization, in vitro embryo development to blastocysts, and live-born offspring rates using sperm and unassisted IVF to re-derive animals from non-ENU control and ENU mice. Sperm assessment parameters included progressive motility, concentration, plasma membrane integrity, membrane function integrity, acrosome integrity, and DNA integrity. There were no significant differences in fresh sperm assessment parameters, DNA integrity, unassisted in vitro fertility rate, in vitro embryo development rate to blastocysts, and live-born offspring rates between non-ENU and C3B6F1/J or B6129S1F1/J ENU mice. In addition, there were no significant differences in frozen-thawed sperm assessment parameters and DNA integrity rates for non-ENU control and ENU C3B6F1/J or B6129SF1/J mice. In vitro fertilization and in vitro embryo development to blastocysts were effected from strain genetic variability (P < 0.05). However, the cryopreservation process caused an increase of DNA fragmentation in non-ENU control and ENU C3B6F1/J or B6129S1F1/J hybrid mice compared to fresh control sperm (P < 0.01). Unlike the combinations of hybrid sperm and hybrid oocyte, increasing frozen-thawed sperm DNA fragmentation decreased the embryo development rate to blastocyst compared to fresh sperm when C57BL6, C3H, or 129S inbred mice were used as oocyte donors (P < 0.05).  相似文献   

4.
The aim of this study was to assess the spermatozoal viability, acrosome integrity, mitochondrial activity, and DNA status in the frozen-thawed fowl semen with the use of flow cytometry. The experiment was carried out on 10 sexually adult roosters of meat type line Flex. The semen was collected three times a week by dorso-abdominal massage method, then pooled and subjected to cryopreservation using “pellet” method and Dimethylacetamide (DMA) as a cryoprotectant. For cytometric analysis the fresh and frozen-thawed semen was extended with EK diluent to a final concentration of 50 million spermatozoa per mL. Sperm membrane integrity was assessed with dual fluorescent probes SYBR-14 and propidium iodide (PI). Acrosomal damages were evaluated using phycoerythrin-conjugated lectin PNA from Arachis hypogaea. The percentage of live spermatozoa with functional mitochondria was estimated using Rhodamine 123 (R123) and PI. The spermatozoal DNA integrity was measured by sperm chromatin structure assay (SCSA). The freezing-thawing process decreased the viability, mitochondrial activity in the chicken sperm and increased the percentage of dead cells with ruptured and intact acrosomes, and also the percentage of spermatozoa with fragmented DNA. In conclusion, the present study indicates that fluorescent staining and flow cytometry may be useful for assessment of the changes of fowl semen quality caused by cryopreservation process. This technique allows precise examination of spermatozoa functional characteristic in a very short time.  相似文献   

5.
An optimal protocol for cat semen cryopreservation has not yet been defined. Addition of Equex STM Paste has been tested for epididymal cat spermatozoa but not for ejaculated cat spermatozoa. Furthermore, the effect of Equex STM Paste on fertilizing ability of cryopreserved semen has never been evaluated in that species. Therefore, the aims of the current study were to investigate if addition of Equex STM Paste to a freezing extender for electroejaculated cat (Felis catus) semen would improve postthaw sperm quality and if sperm fertilizing ability after cryopreservation with or without Equex STM Paste was preserved. Semen was collected by electroejaculation and frozen in a Tris-glucose-citrate egg yolk extender supplemented with (0.5% vol/vol) or without Equex STM Paste. In Experiment 1, sperm motility, membrane integrity, and acrosomal status were determined immediately after collection and at 0, 3, and 6 h postthaw. In Experiment 2, frozen semen from the two groups was used for in vitro fertilization (IVF) of in vitro-matured cat oocytes. Cleavage rate was recorded 30 h after IVF, and embryo development was evaluated on Days 6 and 7 of culture. In Experiment 1, the rate of motile spermatozoa after freezing-thawing was higher when Equex STM Paste was added to the freezing extender, but progressive motility score was not influenced (P > 0.05). Sperm membrane integrity was positively affected (P < 0.05) by the addition of the detergent. Intact acrosomes after thawing were similar (P > 0.05) between groups. Even if the decreasing rates of motility and membrane integrity were more rapid in presence of Equex than those in controls, total motility and sperm viability were similar at 3 and 6 h after thawing (P > 0.05). In Experiment 2, there was no difference in fertilizing ability and embryo development between the two groups (P > 0.05). The results of this study demonstrate that the addition of Equex STM Paste in the freezing extender avoids the loss of motile spermatozoa and maintains fertilizing ability of frozen-thawed spermatozoa.  相似文献   

6.
There is a lack of biomarkers or indices that can be used to predict the quality of fish semen samples following the freezing and thawing cycle. In the present study, a series of semen indices were tested to assess if they could accurately forecast the cryopreservation potential of Atlantic cod (Gadus morhua) semen. Fresh and frozen-thawed sperm activity variables were compared, and relationships between frozen-thawed sperm activity and fertilization success were examined. In comparison with fresh sperm, activity variables of frozen-thawed spermatozoa were reduced. Of the 18 males examined, mean (± SEM) spermatocrit of fresh sperm was 40.72 ± 4.23%, osmolality of the seminal plasma 366.32 ± 4.95 mOsmol/kg, pH 8.32 ± 0.04, protein concentration 1.05 ± 0.08 mg/mL, anti-trypsin activity 153.83 ± 19.25 U/L, and total antioxidant capacity 0.15 ± 0.03 μmol Trolox equivalents/mL. Frozen-thawed fertilization success was highly variable among males with values ranging from 18.5 to 90.2%. Regressions yielded significant positive relationships between frozen-thawed motility, velocity, track crossing frequency, and subsequent fertilization success. Sequential multiple regressions explained up to 95% of the variation in frozen-thawed sperm activity. Spermatocrit and pH of fresh semen were negatively related, whereas osmolality and antioxidant capacity were positively related to frozen-thawed motility and velocity. Each of these indices can be measured within minutes of collecting a fresh sample of semen and are thus early indicators of the capacity of semen samples to withstand cryopreservation. These results have many benefits for conservation of wild stocks, aquaculture production, and for understanding semen biology and cryobiology of fishes.  相似文献   

7.
Boar semen is extremely vulnerable to cold shock and sensitive to peroxidative damage due to high content of unsaturated fatty acids in the phospholipids of the plasma membrane and the relatively low antioxidant capacity of seminal plasma. The present study evaluated the influence of α-tocopherol supplementation at various concentrations in the boar semen extender during cryopreservation on post-thawed sperm motility characteristics (total sperm motility, MOT; local motility, LCM; curvilinear velocity, VCL; straight linear velocity, VSL; and average path velocity, VAP), sperm qualities (viability, acrosomal integrity and apoptosis), expression of stress protein (HSP70), and the expression of pro-apoptotic (Bax and Bak) and anti-apoptotic (Bcl-2l and Bcl-xl) genes. Semen collected from 10 Duroc boars was cryopreserved in lactose-egg yolk buffer supplemented with various concentrations of α-tocopherol (0, 100, 200, 400, 600 and 800 μM) using the straw-freezing procedure and stored at −196 °C for a minimum period of one month. In frozen-thawed groups, sperm motility was significantly (P < 0.05) lower than that of fresh sperm. In fresh sperm, HSP70 immunoreactivity expression was observed in the equatorial region, but in frozen-thawed groups, expressions were mostly observed in the sperm head. Higher apoptosis rates were observed in 600 and 800 μM α-tocopherol supplemented frozen-thawed groups. In α-tocopherol supplemented frozen-thawed groups immediately after thawing, the expression was similar to that of fresh group. But after incubation at 37 °C for 3 h, the expression in 200 and 800 μM α-tocopherol supplemented groups was higher than that of others. Expression of pro-apoptotic genes was significantly higher and anti-apoptotic genes was significantly (P < 0.01) lower in α-tocopherol supplemented frozen-thawed groups compared to fresh sperm group. In conclusion, α-tocopherol, supplemented at 200 μM concentration in boar semen extender during cryopreservation had a positive effect on post-thawed sperm survivability.  相似文献   

8.
Boar semen is occasionally transferred to different locations in liquid form at 15 °C for cryopreservation. However, the use of frozen boar semen is limited due to the high susceptibility of boar sperm to cold shock. The aim of this study was to help improve the quality of frozen boar semen by determining the changes in sperm membrane and ROS during the cryopreservation processes of 15 °C-stored boar semen. Semen was collected from ten Duroc boars and transferred to our laboratory in liquid form stored at 15 °C. After cooling to 5 °C and freezing-thawing, conventional sperm parameters (total motility, progressive motility, and normal morphology), plasma membrane integrity, acrosomal membrane status, and intracellular ROS were evaluated. Sperm function, as assessed by conventional parameters, was unaffected by cooling but was decreased by freezing-thawing (P<0.05). However, the cooling and freezing-thawing processes led to damages in the sperm plasma membrane, and the cooling process caused increase in mean PNA (peanut agglutinin)-fluorescence intensity in viable acrosome-intact sperm (P<0.05). In ROS evaluation, the cooling process decreased intracellular (·)O(2) and H(2)O(2) in viable sperm (P<0.05), while the freezing-thawing process increased intracellular H(2)O(2) (P<0.05) without change in intracellular (·)O(2) in viable sperm. Our results suggest that, in liquid boar semen stored at 15 °C, cooling may be primarily responsible for the destabilization of sperm membranes in viable sperm, while freezing-thawing may induce reductions in sperm function with increase in membrane damage and H(2)O(2).  相似文献   

9.
Semen cryopreservation is fundamental both for the practice of artificial insemination, and for the conservation of genetic resources in cryobanks; nevertheless, there is still not an efficient standard freezing procedure assuring a steady and suitable level of fertility in fowl, and consequently there is no systematic use of frozen semen in the poultry industry. This study examined changes in motility (CASA), cell membrane integrity (Ethidium Bromide (EtBr) exclusion procedure and stress test) and DNA fragmentation (neutral comet assay) in fowl spermatozoa before, during and after cryopreservation and storage at −196 °C. An optimized comet assay for chicken semen was studied and applied to the analyses. Semen collected from 18 Mericanel della Brianza (local Italian breed) male chicken breeders was frozen in pellets and thawed in a water bath at 60 °C. Measurements were performed on fresh semen soon after dilution, after equilibration with 6% dimethylacetamide at 4 °C (processed semen) and after thawing. Sperm DNA damage occurred during cryopreservation of chicken semen and the proportion of spermatozoa with damaged DNA significantly increased from 6.2% in fresh and 6.4% in processed semen to 19.8% in frozen-thawed semen. The proportion of DNA in the comet tail of damaged spermatozoa was also significantly affected by cryopreservation, with an increase found from fresh (26.3%) to frozen-thawed (30.9%) sperm, whereas processed semen (30.1%) didn't show significant differences. The proportion of total membrane damaged spermatozoa (EtBr exclusion procedure) did not increase by 4 °C equilibration time, and greatly and significantly increased by cryopreservation; the values recorded in fresh, processed and frozen semen were 2.9, 5.6, and 66.7% respectively. As regards the proportion of damaged cells in the stress test, all values differed significantly (7.1% fresh semen, 11.7% processed semen, 63.7% frozen semen). Total motility was not affected by equilibration (52.1% fresh semen, 51.9% processed semen), whereas it decreased significantly after cryopreservation (19.8%). These results suggest a low sensitivity of frozen-thawed chicken spermatozoa to DNA fragmentation, therefore it should not be considered as a major cause of sperm injuries during cryopreservation.  相似文献   

10.
The aim of this study was to assess whether a cell permeable superoxide dismutase agent such as MnTE, can further improve the quality of frozen/thawed semen sample using a commercially optimized sperm cryopreservation media (Bioxcell). Bioxcell was supplemented with different concentration of MnTE. Sperm membrane integrity, motility, viability and acrosomal status were assessed after freezing. Optimized concentration of MnTE was defined and used to assess fertilization and developmental potential. 0.1 μM MnTE significantly improved membrane integrity while 0.01 μM MnTE significantly improved acrosomal integrity post thawing. Addition of 0.01 μM MnTE also improved blastocyst formation rate. Supplementation of commercially optimized cryopreservation media with MnTE further improves the quality of goat frozen semen sample and may have important consequence of future embryo development. This effect may be attributed to cell permeable behavior of this antioxidant which may protect sperm genome from ROS-induced DNA damage.  相似文献   

11.
Since antioxidants can overcome the negative effects of reactive oxygen species (ROS) during sperm cryopreservation, post-thaw sperm quality in flat-headed cats (Prionailurus planiceps), an endangered species, might benefit from the addition of antioxidants to semen extender. The objectives of this study were to: 1) investigate semen traits; and 2) evaluate effects of the vitamin E analogue Trolox (vitamin E) and glutathione peroxidase (GPx) on the quality of frozen sperm from captive flat-headed cats in Thailand. Eight ejaculates were collected by electroejaculation from four flat-headed cats. Each semen sample was divided into three aliquots and re-suspended in a semen extender as follows: 1) without antioxidant supplementation (control); 2) supplemented with 5 mM vitamin E; or 3) supplemented with 10 U/mL GPx. All samples were cryopreserved and thawed. Subjective sperm motility, progressive motility, and the integrity of the sperm membrane, acrosome and DNA were evaluated at semen collection, after 1 h cold storage, and at 0 and 6 h after thawing. Mitochondrial membrane potential, early apoptotic cells, and embryo development by heterologous in vitro fertilization were evaluated after thawing. Captive flat-headed cats were affected by teratozoospermia. After 1 h cold storage, sperm membrane integrity in samples supplemented with GPx was higher than the control group (54.5 ± 13.7 vs 51.3 ± 13.9; P < 0.05; mean ± SD). Sperm frozen in extender with GPx had higher motility at 6 h and greater mitochondrial membrane potential at 0 and 6 h post-thaw incubation than the other groups (P < 0.05). In conclusion, GPx improved the quality of frozen-thawed sperm in flat-headed cats.  相似文献   

12.
This study was conducted to elucidate the effect of increasing the osmolality of a basic Tris, extender supplemented with sucrose, trehalose or raffinose on post-thawing ram semen quality (sperm motility, viability, acrosome integrity, total sperm abnormalities and membrane integrity). After primary evaluation of the collected ejaculates, only semen samples with more than 70% motile sperm, and a sperm concentration of higher than 3 × 109 sperm/ml were used for cryopreservation. The semen samples were pooled and diluted (1:4) with a Tris-citric acid-fructose-yolk extender, supplemented with different concentrations (50, 70 or 100 mM) of sucrose, trehalose or raffinose. As control, semen was diluted and frozen in the base diluent, without additional sugars. Pooled semen samples were aspirated into 0.25 ml straws, cooled to 5 °C within 90 min and frozen by exposure to liquid nitrogen vapor (4-5 cm above the liquid nitrogen surface) for 10 min - before plunging into liquid nitrogen, for storage. After 24 h, straws were thawed in a water bath (37 °C) for 30 s. The frozen-thawed sperm characteristics were improved significantly (P < 0.05) by increasing the level of the sugars. Optimal results being obtained with 70 and 100 mM trehalose or raffinose. All extenders containing supplemental sugars were superior in terms of sperm quality to the control (P < 0.01) group. The highest sperm motility (60.6 ± 1.9%), viability (60.6 ± 2.5%) and membrane integrity (58.2 ± 2.1%) were recorded using 100 mM trehalose and the lowest with 50 mM sucrose (48.6 ± 1.9%, 51.4 ± 2.5% and 47.9 ± 2.1%, respectively). All sugar concentrations decreased the percentage of acrosomal and total sperm abnormalities (P < 0.05). The extenders containing 100 mM trehalose or raffinose significantly (P < 0.05) decreased the occurrence of sperm abnormalities, compared to the other treatments. The fertility rates obtained after cervical insemination of the frozen-thawed sperm were 46.8%, 44.1% and 16.7% for 100 mM trehalose, 100 mM raffinose and the control with supplementation of the diluents, respectively. The study showed that ram sperm can tolerate hyperosmotic diluents, and that a range of sugar concentrations (50-100 mM) may successfully be incorporated in the ram semen cryopreservation diluents, although further research is warranted.  相似文献   

13.
The aim of cryopreservation is to maintain cellular integrity, thereby enabling resumption of proper biological functioning after thawing. Here we propose OptiPrep™ (60% iodixanol in water) as a protectant during sperm cryopreservation using pooled bull semen as the model. We evaluated OptiPrep concentration effect and its relation to cryopreservation by comparing frozen-thawed and chilled samples. Semen, extended in Andromed® with 0 (control), 1.25%, 2.5%, and 5% OptiPrep™, was compared after either chilling or freezing in large volume by directional freezing. Sample evaluation included sperm motility upon thawing and after 3 h incubation at 37 °C for frozen-thawed samples and after 3 h and 6 h of chilling for chilled samples; viability, acrosomal integrity, and hypoosmotic swelling were also tested for frozen-thawed and chilled samples. Chilled samples with 5% OptiPrep™ showed inferior viability (P = 0.047) and 3 h motility (P = 0.017) relative to that for chilled samples with 2.5% OptiPrep and inferior viability (P = 0.042), acrosomal integrity (P = 0.045), and 0 h motility (P = 0.024) relative to that for chilled samples with 1.25% OptiPrep. The 1.25%, 2.5%, and control samples did not differ. In frozen-thawed samples, 2.5% OptiPrep was superior to all other concentrations for 3 h motility (control, P = 0.007; 5% OptiPrep, P = 0.005; 1.25% OptiPrep, P = 0.004) and to 1.25% OptiPrep for acrosomal integrity (P = 0.001). In a search for a protection mechanism, we measured glass transition temperature (Tg) of Andromed® and of Andromed® with 1.25%, 2.5%, and 5% OptiPrep™. Andromed® (-58.78 °C) and 1.25% OptiPrep™ (-58.75 °C) groups had lower mean Tg than that of the 2.5% (-57.67 °C) and the 5% (-57.10 °C) groups. Directional cryomicroscopy revealed that the presence of iodixanol alters ice crystal formation into an intricate net of dendrites. Thus, iodixanol appears to possess cryoprotective properties by helping spermatozoa maintain motility and membrane integrity, possibly through altering ice crystals formation into a more hospitable environment and increasing the glass transition temperature.  相似文献   

14.
In the past years a series of functional assays has been developed to determine the structural, morphological and functional integrity of the plasma membrane and sperm acrosomal membrane. Cell volume regulation is an important physiological function crucial for the success of cryopreservation. In this study, the effects induced by freezing-thawing were judged by evaluating the functional characteristics of frozen-thawed semen samples submitted to secondary stress such as osmotic challenge or incubation under capacitating conditions, following cryopreservation. Prior to freezing, dog semen samples were diluted in the presence or absence of Equex STM Paste, which contains sodium dodecyl sulphate (SDS) as the active ingredient. Cell volume regulation and capacitation and calcium ionophore-induced membrane dynamics were assessed in freshly diluted and frozen-thawed semen samples by electronic volume measurement and flow cytometry. Cryopreservation led to a disturbance of the volume regulatory function and to a rapid decrease in the proportion of acrosome-reacted live spermaotozoa. Extender containing Equex STM Paste had a protective effect on isotonic cell volume, on regulatory function under hypertonic conditions, and on the proportion of live acrosome-reacted cells. The evaluation of the functional state of sperm submitted to secondary stress after freezing-thawing leads to a more subtle characterization of sperm function and helps improve the cryoprotective efficiency of the extender.  相似文献   

15.
The present study was conducted to assess the capacitation status of fresh and frozen-thawed buffalo spermatozoa and its relationship with sperm cholesterol level, membrane fluidity and intracellular calcium. Semen from seven buffalo bulls (eight ejaculates each) was divided into two parts. Part I was used as fresh semen and part II was extended in Tris–egg yolk extender, equilibrated (4 °C for 4 h) and frozen at −196 °C in LN2. The fresh and frozen-thawed spermatozoa were assessed for capacitation status using chlortetracycline (CTC) fluorescent assay, membrane fluidity using merocyanine 540/Yo-Pro-1 assay and intracellular calcium using Fluo-3 AM with flowcytometry. Results revealed a significant (P < 0.01) increase in capacitated sperm population in frozen-thawed semen compared to fresh semen (42.21% vs 14.32%). Similarly, a significantly (P < 0.01) higher proportion of frozen-thawed live spermatozoa showed high membrane fluidity (53.62% vs 25.67%) and high intracellular calcium (43.68% vs 11.72%) compared to fresh semen. The sperm cholesterol was significantly (P < 0.01) reduced after freezing–thawing as compared to fresh semen. The proportion of capacitated spermatozoa (CTC pattern B) was positively correlated with the proportion of sperm with high intracellular calcium (r = 0.81) and high membrane fluidity (r = 0.65), and negatively correlated with cholesterol level (r = −0.56) in frozen-thawed semen. The membrane fluidity was also strongly associated with the cholesterol level and intracellular calcium. The study concluded that changes in buffalo spermatozoa and established the relationship among capacitation status, sperm cholesterol level, membrane fluidity and intracellular calcium concentration in frozen-thawed spermatozoa.  相似文献   

16.
Cryopreservation of boar semen is still considered suboptimal due to lower fertility when compared to fresh semen. The aim of this study was to evaluate the effects of the addition of different sugars (lactose, trehalose and glucose) on boar spermatozoa cryopreserved in an egg yolk based extender. Ejaculates were collected from a boar previously selected and semen samples were processed using the straw freezing procedure. In experiment 1, subsamples of semen were frozen in three different extenders: recommended lactose egg yolk extender (LEY); trehalose egg yolk extender (TEY) and glucose egg yolk extender (GEY). Sperm quality was assessed for motility, viability, acrosome integrity and hypoosmotic swelling test response upon collection, after freezing and thawing and then every hour for 3 h. Results showed that total motility at 1 and 3 h, progressive motility at 3 h, positive hypoosmotic response at 2 and 3 h and acrosome integrity at all times were significantly improved when trehalose was added to the extender. In experiment 2, sugar influence was also demonstrated in vitro fertilization. A total of 1691 oocytes were in vitro matured and inseminated with frozen-thawed sperm at 2000:1 sperm:oocyte ratio and coincubated for 6 h. Presumptive zygotes were cultured in NCSU-23 medium to assess fertilization parameters and embryo development. Both penetration and monospermy rates were significantly higher for trehalose frozen semen. A significant increase was observed in efficiency and blastocyst formation rates from TEY to the other groups. Our results demonstrated that trehalose extender enhances spermatozoa viability and its in vitro fertilization parameters in boar ejaculates with good sperm freezability. Further studies are necessary to assess the impact of sugars on the entire population.  相似文献   

17.
We aimed in the first part of our work to study the effect of cryopreservation on the human sperm DNA integrity and the activation of caspase 3, the main apoptosis indicator. In the second part, we were interested in testing the effect of quercetin, as an antioxidant, in preventing sperm damage during the freeze–thawing process. Seventeen semen samples were obtained from 17 men recruited for infertility investigations. Liquefied sperm was cryopreserved using spermfreeze®. Nine of the used samples were divided into two aliquots; the first one was cryopreserved with spermfreeze only (control) and the second one was cryopreserved with spermfreeze supplemented with quercetin to a final concentration of 50 μM. Sperm motility and viability were assessed according to WHO criteria. We used TUNEL assay and the Oxy DNA assay to assess sperm DNA integrity. Activated caspase 3 levels were measured in spermatozoa using fluorescein-labeled inhibitor of caspase (FLICA). Cryopreservation led to a significant increase in sperm DNA fragmentation, DNA oxidation and caspase 3 activation (p < 0.01). Supplementation of the cryopreservation medium with quercetrin induced a significant improvement in post thaw sperm parameters, compared to those of control, regarding sperm motility (p = 0.007), viability (p = 0.008) and DNA integrity (p = 0.02); however, it had no effect on caspase 3 activation (p = 0.3). We conclude that oxidative stress plays a major role in inducing sperm cryodamage but implication of apoptosis in this impairment requires further investigations. Quercetin could have protective effect during cryopreservation but further research is needed to confirm this effect.  相似文献   

18.
Although Rhodiola sacra aqueous extract (RSAE) has been used in many studies as an antioxidant, its effects on semen characteristics and its antioxidant properties during cryopreservation of boar sperm have never been evaluated. Semen was collected from five Duroc boars (2-4-year-old) twice weekly and frozen-thawed in extender with RSEA. Motion characteristics were assessed with a computer-aided semen analysis (CASA) system, whereas other sperm quality end points were assessed by routine methods. The effective concentration of RSEA in extender ranged from 4 to 8 mg/L and the effect of RSEA on sperm quality was better in glycerol-free extender than extender containing glycerol (P < 0.05). In frozen-thawed boar semen, there was a direct correlation (P < 0.05) between RSEA concentration and glutathione (GSH) concentrations, mitochondrial activity, and hypoosmotic swelling test (HOST), and an inverse correlation (r = −0.982, P < 0.05) between RSEA concentration and malondialdehyde (all end points were significantly higher at 6 mg/L than in the control group). In summary: (i) the effective concentration of RSEA in extender ranged from 4 to 8 mg/L; (ii) the effect of RSEA on sperm quality was better in extender without glycerol; and (iii) there was a significant correlation between RSEA concentrations and concentrations of GSH and MAD in frozen-thawed boar semen (antioxidant effects of RSEA were concentration-dependent). Further studies are needed to define the active ingredient in RSEA that protects boar sperm against ROS.  相似文献   

19.
To evaluate the influence of dietary supplementation of omega-3 polyunsaturated fatty acids (n-3 PUFA) on storage of boar semen, three experiments were conducted: two involved long-term, fresh semen storage (Exp. 1 and Exp. 2), whereas the other involved cryopreservation (Exp. 3). Boars were allocated randomly to three dietary treatments (for 6-7 mo). In addition to a daily allowance of 2.5 kg of a basal diet, they received: 1) 62 g of hydrogenated animal fat (AF); 2) 60 g of menhaden oil (MO), containing 18% docosahexanoic acid (DHA) and 15% eicosapentanoic acid (EPA); or 3) 60 g of tuna oil (TO), containing 33% DHA and 6.5% EPA. In Experiment 1 (n = 26) and Experiment 2 (n = 18), semen was cooled and stored in vitro for several days at 17 °C before assessment, whereas in Experiment 3 (n = 18), viability, motility, acrosomal integrity, susceptibility to peroxidation (LPO), and DNA fragmentation were determined in fresh and frozen-thawed sperm. In Experiment 1, sperm from boars fed TO had better resistance to fresh storage; even after 7 or 9 d of storage at 17 °C, there were more (P = 0.03) motile sperm in boars fed TO (>60%) than in those fed AF or MO. In Experiment 2, fish oil supplementation did not influence any aspect of sperm quality during semen storage (P > 0.10). In Experiment 3, cryopreservation decreased the proportion of motile and viable frozen-thawed sperm as well as acrosomal integrity and increased DNA fragmentation and LPO (P < 0.01) relative to fresh semen, although sperm quality was unaffected by treatments (P > 0.09). In conclusion, although adding fish oil to the diet failed to significantly improve the quality of cryopreserved boar sperm, inconsistent responses of long-term storage of cooled sperm to dietary n-3 PUFA supplementation warrant further investigation.  相似文献   

20.
The semen of five Majorera breed bucks was collected and processed to reach a final concentration of 200 × 106 spermatozoa/straw in the extender containing 4% of glycerol and 12% of egg yolk. Two freezing techniques were assessed: (LN) straws were frozen and stored in liquid nitrogen, and (ULF) straws were frozen and stored in the ultra-low freezer at −152 °C. Semen quality (sperm motility, acrosome integrity and abnormal sperm cells percentages) was determined for different storage times (1, 30, 90 and 365 days of cryopreservation). Thereafter, 150 Majorera goats were assigned to four experimental groups: for groups LN-1 (n = 40) and LN-6 (n = 35), the goats were transcervically inseminated with frozen-thawed semen stored for 1 and 6 months in liquid nitrogen, respectively, while for groups ULF-1 (n = 40) and ULF-6 (n = 35), the goats were transcervically inseminated with frozen-thawed semen stored for 1 and 6 months in an ultra-low freezer at −152 °C, respectively. The pregnancy rate was determined by transabdominal ultrasound scanning; in addition, the kidding rate and prolificacy were recorded at parturition. In vitro results showed that the freezing protocol did not affect sperm quality with similar values for up to 1 year of cryopreservation. The kidding rates were not significantly different between experimental groups (43.6%, 38.5%, 42.8% and 40.0% for groups LN-1, ULF-1, LN-6 and ULF-6, respectively). In all experimental groups, the kidding rate and prolificacy were significantly higher (p < 0.01) in multiparous than in nulliparous goats. Therefore, the in vitro results and fertility trials confirmed the efficiency of the ULF technique for freezing and storage of goat semen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号