首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the economically important diseases of onion is the basal rot caused by various Fusarium species. Identification of the pathogenic species prevalent in a region is indispensable for designing management strategies, especially to develop resistant cultivars. Eighty Fusarium isolates are obtained from red onion bulbs on infected fields of East Azarbaijan province. Inoculating the onion bulbs with 38 selective isolates indicated that 17 isolates were pathogenic on onion. According to the morphological and molecular characteristics, these isolates were identified as F. oxysporum, F. solani, F. proliferatum and F. redolens. This is the first report of F. redolens on onion in Iran. On the other hand, the virulence of each pathogenic isolate was evaluated on onion bulbs and seedlings. F. oxysporum which causes severe rot and damping-off was considered as a highly virulent species in both conditions. While, F. proliferatum was considered as the most destructive on onion bulbs. Rot ability of F. solani was not considerable, and only the 4S isolate caused pre- and post-emergence damping-off more than 50%. Finally, F. redolens with less pathogenicity on onion bulbs was identified as the most virulent isolate on onion seedlings, which was explanatory of its importance on farm.  相似文献   

2.
To identify Fusarium species associated with diseases of root and basal plate of onion, surveys were conducted in seven provinces of Turkey in 2007. Samplings were performed in 223 fields, and 332 isolates belonging to 7 Fusarium spp. were obtained. The isolates were identified as Foxysporum, Fsolani, Facuminatum, Fequiseti, Fproliferatum, Fredolens, and Fculmorum based on morphological and cultural characteristics. Also, species‐specific primers were used to confirm the identity of Fusarium species. Foxysporum was the most commonly isolated species, comprising 66.57% of the total Fusarium species. Fredolens was identified for the first time in onion‐growing areas of Turkey. Selected isolates of each species were evaluated for their aggressiveness on onion plant. Foxysporum, Fsolani, Facuminatum, Fproliferatum, and Fredolens were highly pathogenic, causing severe damping‐off on onion plants cv. Texas Early Grano. Inter‐simple sequence repeats (ISSR) markers revealed a high degree of intra‐ and interspecific polymorphisms among Fusarium spp.  相似文献   

3.
Fusarium spp. attack potato roots causing root-rot, damping-off and wilt disease in Assuit Governorate. Forty-five Fusarium isolates were isolated from F. nygamai, F. acutatum, F. solani, F. proliferatum, F. subglutinans, and F. oxysporum. Isolates were tested for their pathogenic capability on Burn potato variety during growing season 2007/2008. Isolates infect potato plants causing either damping-off or wilt symptoms. Isolates varied in their virulence. Role of potato tuber seed in the transmission of the causal pathogen to daughter using Electrophoresis. Protein profiles of the tested isolates divided into four sub-clusters at similarity levels 93.79, 91.55 and 92.62% while isolate of Fusarium profile No. 11 formed separate sub-clusters at similarity level 69.79%. F. nygamai and F. solani were notable exception because profile No. 4 of F. nygamai from roots and profile No. 4 from sprouts were almost identical (similarity level 96.81%); similarity level between profile No. 8 from roots and profile no/8 from sprouts was 95.44%. Results prove that F. nygamai and F. solani are potato tuber seed-borne fungus. T. harzianum, T. viride, T. longibrachiatum, G. virens and E. nigrum or its filtrate inhibited the growth of F. nygamai, F. acutatum, F. solani, F. proliferatum, F. subglutinans and F. oxysporum. The formulation of T. harzianum, T. longibrachiatum and G. virens against tested pathogenic fungi reduce disease incidence under greenhouse conditions.  相似文献   

4.
Abstract

Fusarium species are known to play a role in several diseases of cotton including the seedling disease complex, wilt, and boll rot. Therefore, a mycoflora study was conducted in 1998 in order to identify Fusarium species found in association with cotton roots. A total of 109 samples of cotton seedlings infected with post-emergence damping-off or rotted roots of adult plants were obtained from different cotton-growing areas in Egypt. Forty-six isolates were recovered and were identified as follows: F. oxysporum (28 isolates), F. moniliforme (9), F. solani (6), F. avenaceum (2), F. chlamydosporum (1). F. oxysporum, F. moniliforme and F. solani, the dominant species, accounted for 60.9%, 19.6% and 13% of the total isolates, respectively in 1998. F. oxysporum showed the highest isolation frequency in Beharia and Minufiya while F. moniliforme showed the most isolation frequency in Minufiya and Gharbiya. F. oxysporum was one of the major taxa of the Fusarium assemblage from Giza 70. F. oxysporum showed the most frequently isolated fungus in May while F. moniliforme and F. solani were the most frequently isolated fungi in August. Isolation frequency of Fusarium spp. during July and August was significantly greater than that of April or June. This implies that cotton roots are subjected more to colonization by Fusarium spp. as plants mature. Regarding pathogenicity, of the 46 isolates of Fusarium spp. tested under greenhouse conditions, 38 isolates (82.4%) were pathogenic to seedlings of Giza 89. This study indicates that F. oxysporum and F. moniliforme are important pathogens in the etiology of cotton damping-off in Egypt.  相似文献   

5.
In the past 10 years, there has been a substantial increase in reports, from growers and extension personnel, on bulb and root rots in lily (Lilium longiflorum) in Israel. Rot in these plants, when grown as cut flowers, caused serious economic damage expressed in reduction in yield and quality. In lily, the fungal pathogens involved in the rot were characterized as binucleate Rhizoctonia AG‐A, Rhizoctonia solani, Pythium oligandrum, Fusarium proliferatum (white and purple isolates) and F. oxysporum, using morphological and molecular criteria. These fungi were the prevalent pathogens in diseased plants collected from commercial greenhouses. Pathogenicity trials were conducted on lily bulbs and onion seedlings under controlled conditions in a greenhouse to complete Koch's postulates. Disease symptoms on lily were most severe in treatments inoculated with binucleate Rhizoctonia AG‐A, P. oligandrum and F. proliferatum. Plant height was lower in the above treatments compared with the control plants. The least aggressive fungus was R. solani. In artificial inoculations of onion, seedling survival was significantly affected by all fungi. The most pathogenic fungus was F. proliferatum w and the least were isolates of F. oxysporum (II and III). All fungi were successfully re‐isolated from the inoculated plants.  相似文献   

6.
During 2011, Fusarium rot of stored garlic was detected on bulbs of ‘Aglio Bianco’ (white garlic) in Piacenza, Ferrara and Rovigo districts. Bulbs, harvested in July, were asymptomatic. During conservation in the drying sheds, approximately thirty percent of bulbs appeared emptied and softened. Fusarium proliferatum was consistently recovered from infected bulbs. The morphological identification was confirmed by Translation Elongation Factor 1‐alpha gene sequencing. Koch postulates were checked through pathogenicity tests. The disease has already been reported in Serbia, Germany, Spain, United States, China and India, but to our knowledge, this is the first report of F. proliferatum garlic bulb rot in Italy.  相似文献   

7.
Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran.  相似文献   

8.
To find a potential biocontrol agent against Fusarium sp. in apple seedlings, an endophytic bacterium strain was isolated from apple tree tissues. The inhibitive efficiency of the isolated strain against the hyphal growth of Fusarium sp. and Rhizoctonia solani was tested. Strain Y-1 showed significant inhibitory effects against Fusarium oxysporum, F. moniliforme, F. proliferatum, F. solani and R. solani. Its antifungal activity against F. oxysporum was the highest, reaching up to 64.90 %. In vivo tests indicated that strain Y-1 effectively protects apple from F. oxysporum infections. The control effect reached 92.26 % when bacterial inoculation was performed 3 days prior to pathogen inoculation. Strain Y-1 could colonize the rhizosphere and tissues within 30 days. It was also able to induce systemic resistance in apple seedlings as shown by the activities of SOD and POD. Strain Y-1 significantly increased the root length, root wet and dry weights, and plant height of the apple seedlings compared with the control group. The homology analysis of the 16S rRNA sequence, together with morphological, physical, and biochemical analyses, revealed that strain Y-1 is Bacillus subtilis.  相似文献   

9.
Toxinogenic Fusarium species were identified on grape berries from Slovak vineyards, and their toxic metabolites were analysed by HPLC-MS/MS. F. subglutinans, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. subglutinans, and F. verticillioides were found with varying frequency. F. oxysporum and F. proliferatum, cultured in vitro on Czapek yeast autolysate agar and yeast extract sucrose agar, produced beauvericin, in the range from 3,265 to 13,400 μg/kg, and fusaproliferin in high concentration, ranging from 49,850 to 259,500 μg/kg. A maximum value of 2.24 μg/kg has been observed for beauvericin in dried grape berries. Fumonisin B1, and fumonisin B2 were also identified, and the observed levels ranged from 500 to 2,040 μg/kg. Over 2 years (namely 2008 and 2009) many other metabolites have been identified and analysed in grape berries, in particular: avenacein Y, apicidin, aurofusarin, chlamydosporol, 2-amino-14,16-dimethyloctadecan-3-ol, enniatin A, enniatin A1, enniatin B2, enniatin B3, and equisetin.  相似文献   

10.
Aqueous and solvent extracts of seeds of P. corylifolia were evaluated for antifungal activity by poisoned food technique against eight important phytopathogenic species of Fusarium commonly associated with maize seeds. Antifungal activity was observed in both aqueous and solvent extracts. Petroleum ether extract showed highly significant activity against all the Fusarium species. F. graminearum was highly susceptible, while F. lateritium was least susceptible. The antifungal activity increased with increasing concentration of the extract. The minimal inhibitory concentration (MIC) value of the aqueous extract for F. graminearum was 15% and for F. equiseti, F. moniliforme, F. semitectum and F. solani it was 40%. Total inhibition was not observed in the case of F. lareritium, F. oxysporum and F. proliferatum. The results of the study are of immense value in the management of seed borne phytopathogenic species of Fusarium known to cause significant yield loss in maize.  相似文献   

11.
Abstract

Basal rot is the main and economically soil-borne disease of onion that caused by various Fusarium species worldwide. To identify the prevailing Fusarium species, 140 Fusarium isolates were obtained from red onion bulbs farms in 10 regions of East and West Azarbaijan provinces in 2015. By inoculating 80 selected isolates, 40 of them were pathogenic on onion. These 40 isolates were identified as F. oxysporum with 43.62%, F. subglutinans with 44%, F. culmorum with 50.66%, F. avenaceum with 51%, F. solani with 42.41%, F. crookwellens with 55%, F. proliferatum with 47.16% and F. redolens with 55.5% virulence. Their frequency were 20%, 2.5%, 7.5%, 5%, 42.5%, 2.5%, 15% and 5%, respectively. Forty studied isolates demonstrating that, 14.2% were highly virulent, 26.1% virulent, 40.3% moderately virulent and 19.4% weakly virulent. This is the first report of F. avenaceum and F. crookwellens as the causal agents of red onion basal rot in Iran.  相似文献   

12.
Asparagus crown and root rot caused by Fusarium oxysporum f.sp. asparagi (Foa), F. proliferatum (Fp) and F. solani (Fs) result in early decline and loss of crop production. The role of several crop species on the survival of the Fusarium spp. was investigated. The root symptoms and plant weight of seven crop species were evaluated after inoculation with each of the three Fusarium spp. The number of colony‐forming units of the Fusarium spp. from root tissues was also determined. Garlic was shown to be a symptomatic host for Foa, Fp and Fs; Fs was also pathogenic to onion. Root colonization of garlic, onion, maize, wheat, potato and sunflower suggested that they are reservoirs of Foa, Fp and Fs from asparagus and demonstrated the importance of crop rotation on the development of this asparagus disease.  相似文献   

13.
Garlic extract, prepared as a juice from crushed garlic cloves inhibited the in-vitro growth of Fusarium solani f.sp. phaseoli. Adequate in-vivo control of foot rot of Phaseolus vulgaris cv. Seafarer was achieved by seed treatment with either the extract from crushed cloves or with an aqueous preparation of commercial lyophilized garlic powder.  相似文献   

14.
Fusarium proliferatum is able to produce fumonisins and is considered a pathogen of many economically important plants (e.g. corn, rice, asparagus) [1]. The occurrence of fumonisin FB1 inF. proliferatum infected asparagus spears from Germany was investigated using a liquid chromatography/electrospray ionization-mass spectrometry (LC-ESI-MS) method with isotopically labeled fumonisin FB1-d6 as internal standard. Asparagus samples were harvested in July 2000 and screened forFusarium species. AltogetherF. oxysporum, F. proliferatum and F. sambucinum were isolated from the spears. The samples infected with F.proliferatum were subsequently analyzed for fumonisins. FB1 was detected in 9 of the 10 samples in amounts ranging from 36.4 ng/g to 4513.7 ng/g (based on dry weight). Fumonisins FB2 and FB3 were found in six samples in lower concentrations. In asparagus spears of June 2002 we could findF. proliferatum in 6% of the samples, however no fumonisins were detectable. Furthermore the capability of producing FB1 by the fungus in garlic bulbs was investigated. Therefore garlic was cultured inF. proliferatum contaminated soil and the bulbs were screened for infection with F.proliferatum and for the occurrence of fumonisins by LC-MS. F.proliferatum was detectable in the garlic tissue and all samples contained FB1 (26.0 ng/g to 94.6 ng/g). This is the first report of the natural occurrence of FB1 in German asparagus spears and furthermore our findings suggest a potential for natural contamination of garlic bulbs with fumonisins. For detailed results and methods see Ref. [2].  相似文献   

15.
Asparagus spears collected from a total of six commercial plantings in Austria during the main harvest periods in May and June of 2003 and 2004 were examined for endophytic colonization byFusarium spp., particularlyF. proliferatum. Potentially toxigenic fungi such asF. proliferatum were isolated and identified by morphological characteristics using light microscopy. Fumonisin B1 inF. proliferatum-infected asparagus spears was detected with IAS-HPLC-FLD or HPLC-MS/MS. The identity of endophytic fungi colonizing of a total of 816 individual spears was determined. The incidence of infection byF. proliferatum and otherFusarium spp. was highly dependent on location and sampling date. The dominantFusarium species among the endophytic microflora wasF. oxysporum. Other frequently isolated species includedF. proliferatum, F. sambucinum, F. culmorum, F. avenaceum andF. equiseti. The incidence ofF. proliferatum-infected asparagus spears was less than 10% at four of the six sampling locations. At the two remaining locations, 20–47% of the spears examined were infected withF. proliferatum. Further exploration of FB1 generation in asparagus is required because the low levels of FB1 (10–50 (μg/kg) detected in harvested spears in 2003 and 2004 cannot be explained by the results of this study.
  相似文献   

16.
The impact of 10 Fusarium species in concomitant association with Rotylenchulus reniformis on cotton seedling disease was examined under greenhouse conditions. In experiment 1, fungal treatments consisted of Fusarium chlamydosporum, F. equiseti, F. lateritium, F. moniliforme, F. oxysporum, F. oxysporum f.sp. vasinfectum, F. proliferatum, F. semitectum, F. solani, and F. sporotrichioides; Rhizoctonia solani; and Thielaviopsis basicola. The experimental design was a 2 × 14 factorial consisting of the presence or absence of R. reniformis and the 12 fungal treatments plus two controls in autoclaved field soil. In experiment 2, the same fungal and nematode treatments were examined in autoclaved or non-autoclaved soil. This experimental design was a 2 × 2 × 14 factorial consisting of field or autoclaved soil, presence or absence of R. reniformis, and the 12 fungal treatments plus two controls. In both tests, Fusarium oxysporum f. sp. vasinfectum, F. solani, R. solani, and T. basicola consistently displayed extensive root and hypocotyl necrosis that was more severe (P ≤ 0.05) in the presence of R. reniformis. Soil treatment (autoclaved vs. non-autoclaved) influenced the impact of the Fusarium species on cotton seedling disease, with disease being more severe in the autoclaved soil. Rotylenchulus reniformis reproduction on cotton seedlings was greater in field soil compared to autoclaved soil (P ≤ 0.05). This study suggests the importance of Fusarium species and R. reniformis in cotton seedling disease.  相似文献   

17.
C. M. Fan    G. R. Xiong    P. Qi    G. H. Ji    Y. Q. He 《Journal of Phytopathology》2008,156(6):321-325
Biofumigation, as an environment‐friendly alternative to methyl bromide is gaining attention in sustainable agricultural production systems. Based on the biofumigation suppression of growth of three soil‐borne filamentous fungi (Fusarium sp., F. oxysporum and P. aphanidermatum), Brassica oleracea var. caulorapa was selected from eight Brassica and other plant species as a potential material for the purpose. Powdered tissues of plants were confined to individual Petri dishes without physical contact with each of the following 28 fungal isolates from 16 hosts: 13 Fusarium spp., two Verticillium dahliae, two Ceratocystis fimbriata, Bipolaris sorokiniana, Gaeumannomyces graminis, Ceratobasidium cornigerum, Rhizotonia cerealis, Phytophthora parasitica, Phytophthora capsici, Botrytis cinerea, two Rhizoctonia solani, Sclerotinia sclerotiorum and Magnaporthe grisea. The level of suppression of growth 7 days after inoculation varied. Based on growth suppression, the 28 isolates were grouped into three clusters by Fuzzy clustering: Cluster I contains F. proliferatum with 20.5% suppression, Cluster II composed of 15 isolates, Fusarium sp., two V. dahliae, two C. fimbriata, B. sorokiniana, C. cornigerum, two R. solani, R. cerealis, S. sclerotiorum, P. parasitica and M. grisea, with 75.2–100% suppression and Cluster III consisted of 12 isolates; five F. oxysporum, F. solani, F. azysporum, F. moniliforme, F. graminearum, F. verticillioides, G. graminis, P. capsici with 40.7–66.2% suppression. Ceratobasidium fimbriata and V. dahliae were more sensitive to biofumigation than S. sclerotiorum and F. culmorum when different amounts of ground powder were used. One gram of powder could suppress the growth of the former two up to 68.6% and 68.7%, but the growth suppression in the latter two by 12.7% and 24.0%, respectively. These results indicated that the amount of plant tissue to be used should be considered depending on target pathogen species. The swollen root of B. oleracea var. botrytis appeared a better material than the leaf for achieving suppression of growth in pathogenic fungi.  相似文献   

18.
Wilt is a serious disease of guava crop in India. Fusarium oxysporum f. sp. psidii and F. solani have been reported as the main causative agents of this disease. Most recently a survey on guava plants affected with wilt disease was conducted in severely affected areas of India, and two new species of Fusarium viz. Fusarium proliferatum and Fusarium chlamydosporum were found to be associated with this disease. However, pathogenecity of Fusarium chlamydosporum was successfully conducted in the field trials. The culture of F. chlamydosporum was processed for DNA sequencing and DNA sequence was submitted to NCBI with GenBank accession no. HM102506. The submitted DNA sequence of F. chlamydosporum was compared for the genetic position in Fusarium spp. evolutionary phylogenic tree.  相似文献   

19.
Trichoderma is a well-known antagonist against soilborne plant pathogens. However, the species and even various isolates have different biocontrol potential. To evaluate the antagonistic activities of Trichoderma harzianum, T. harzianum strain T100 (T100), T. viride and T. haematum against Fusarium oxysporum and F. proliferatum, we used dual culture and productions of volatile and non-volatile metabolites in three different phases in vitro. An analysis of the data in dual culture tests represented T. viride, T. haematum and T100 as effective antagonists of Fusarium while T100 was the only fungus being able to lyse the confronting mycelia. Similar results were obtained in the volatile metabolites tests also. In contrast with the two previous tests, the non-volatile metabolites produced by T. harzianum inhibited Fusarium mycelial growth the most, and T100 acted moderately. It was also clearly showed that the antagonistic effect of Trichoderma spp. was more on F. proliferatum than on F. oxysporum. Finally, because Trichoderma spp. was most effective in the second phase, we recommend to use T100 against F. proliferatum at the initial stages of infection as its mycoparasitism on F. oxysporum was observed microscopically through forming apressoria structures without any coiling around the pathogen.  相似文献   

20.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号