首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
【背景】粮食在生长和收储期极易受到病原真菌或产毒真菌的污染,造成严重的损失。众多实践证明木霉属(Trichoderma)可以有效防治植物病原真菌。【目的】鉴定和筛选能有效抑制粮食常见危害真菌的木霉生防菌株,开发生防菌剂,保障粮食生产安全。【方法】从粮食上分离筛选出35株木霉,通过多基因系统发育分析和形态学观察方法进行菌种鉴定,利用平板对峙试验筛选出对粮食常见危害真菌有抑制作用的菌株。【结果】35株木霉分属于8个种,分别为非洲哈茨木霉(Trichodermaafroharzianum)、类棘孢木霉(Trichodermaasperelloides)、 Trichoderma amoenum、近深绿木霉(Trichoderma paratroviride)、Trichoderma obovatum、长枝木霉(Trichoderma longibrachiatum)、东方木霉(Trichodermaorientale)和深绿木霉(Trichodermaatroviride)。对峙试验结果表明,这8种木霉对于粮食上分离到的10种危害真菌均具有较好的抑制效果。非洲哈茨木霉(T.afroharzi...  相似文献   

3.
Trichoderma spp. are widely used as plant disease biocontrol agents in agriculture. Mycoparasitism, which is an ancestral trait of Trichoderma, is one of the most important mechanisms of reducing the pathogen inocula. Mycoparasitism is a complex physiological process that should be viewed in the broad perspective of microbial competition, and involves the production of enzymes and secondary metabolites. Trichoderma spp. have traditionally been viewed as necrotrophic mycoparasites; however, there are evidences that, at least in some instances, they behave as hemibiotrophs, causing minor damage to the host cell wall and having an intracellular existence in the host cell for a significant period. In this review, we cover different aspects of Trichoderma as mycoparasites, ranging from evolution to genomics and interactions with “non-target” fungi.  相似文献   

4.
Botryodiplodia disease caused by Botryodiplodia theobromae is a recently disease of some Annona cultivars in Egypt, particularly in Behera Governorate, characterized by stem purple lesions, dieback, flowers, and fruits dry and soft rot. Six fungal and bacterial bioagents, i.e., Trichoderma koningii, Trichoderma hamatum, Pseudomonas fluorescens, Pseudomonas putida, Tilletiopsis minor, and Tilletiopsis washingtonensis were tested either solely or at different amalgamations against Botryodiplodia disease, as foliar spraying using three Annona cultivars, i.e., Balady and Abd El-Razik (Annona squamosa) and Hindy (Annona cherimola). In vitro, studies revealed a significant inhibition towards the conidial germination of B. theobromae as well as on the disease incidence on artificially inoculated branches and fruits in the presence of the aforementioned bioagents. An unmistakable reduction in the disease was conspicuous under the action of multi-bioagent conduct. The bioagents were tested during 2003 and 2004 agricultural seasons under the field conditions at Nobaria, (Behera Governorate). A single application and all possible mixture of two or three of the bioagents were applied at 15 days intervals as a foliar spray. Botryodiplodia disease severity and sporulation of the pathogen were always reduced, when the multi-bioagents were applied. When Trichoderma spp. and Pseudomonads spp. were blended together, the disease was greatly abridged in the three tested cultivars compared to any of the sole bioagents. The multi-bioagents were more effective than any sole or even double treatments. The application of multi-bioagents also resulted in a significant increase of fruit yield.  相似文献   

5.
In vitro, Trichoderma album, Trichoderma harzianum, Trichoderma koningii, Trichoderma viride and Trichoderma virens showed antagonistic effect against the most pathogenic isolate (Sc2) of Sclerotium cepivorum, the cause of onion white rot disease. Five Trichoderma preparations of each Trichoderma sp. were prepared on wheat bran powder to be used for controlling white rot disease of onion. Greenhouse and field experiments followed the same trend where T. harzianum and T. koningii were the most effective in reducing the incidence and severity of white rot disease compared with the control. Trichoderma species preparations caused promotion to vegetative parameters of onion plants in pots and increase bulb productivity in filed. In this regard, T. harzianum and T. koningii were the most effective. A positive correlation was found between the biocontrol activity of Trichoderma species preparations and enhancement of peroxidase, polyphenoloxidase and chitinase enzymes in onion plants to resist infection with S. cepivorum.  相似文献   

6.
The use of specific mycolytic soil microorganisms to control plant pathogens is an ecological approach to overcome the problems caused by standard chemical methods of plant protection. The ability to produce lytic enzymes is a widely distributed property of rhizosphere-competent fungi and bacteria. Due to the higher activity of Trichoderma spp. lytic enzymes as compared to the same class of enzymes from other microorganisms and plants, effort is being aimed at improving biocontrol agents and plants by introducing Trichoderma genes via genetic manipulations. An overview is presented of the data currently available on lytic enzymes from the mycoparasitic fungus Trichoderma. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We describe a polymerase chain reaction (PCR)-based test that is specific for the pathogenic European biotype 2 (Th2) and North American biotype 4 (Th4) of Trichoderma harzianum, responsible for the green mold epidemic in the cultivated mushroom, Agaricus bisporus. A PCR primer pair was designed that targets a 444-bp arbitrary sequence in the genome of Th4. The primers also amplified the same product with Th2, but showed no reactivity with other biotypes of T. harzianum, several biocontrol Trichoderma, or with 31 other genera and species of fungi. The PCR-based test should have application in disease management programs, and in the evaluation of biocontrol Trichoderma for potential pathogenicity on mushrooms. Received: 23 November 1998 / Received revision: 19 February 1999 / Accepted: 5 March 1999  相似文献   

8.
Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.  相似文献   

9.
Field trials were carried out in upstate New York in 1990, 1992, 1993, and 1994 and in Chile in 1992–1993 and 1993–1994 in order to evaluate the ability of various strains ofTrichodermaspp. to control bunch rot of grape, to assess the compatibility and possible additive effects of selected biocontrol fungi and dicarboximide fungicides, and to determine factors affecting biocontrol efficacy. In 1990, three strains ofTrichodermaspp. were evaluated for their biocontrol ability, and all provided significant control ofBotrytis cinerea.As few as two late applications of the biocontrol fungi were nearly as effective as up to five applications throughout bloom and fruit development. Trials in New York in 1992 and in Chile in 1992–1993 indicated thatTrichoderma harzianumcould replace some applications of iprodione or vinclozolin with little reduction in efficacy. In New York in 1993, we found that applications ofT. harzianumat bloom and early fruit development followed by a tank-mix application ofT. harzianumand half rates of iprodione gave extremely effective control of bunch rot. In 1994, less effective control was obtained than in earlier years. Addition of a nutritive adhesive (Pelgel, a mixture of carboxymethyl cellulose and gum arabic) applied with the biocontrol agent tended to improve results. Thus, biological control of bunch rot of grape withT. harzianumcan be an effective method of management of this disease.  相似文献   

10.
Malformation disease of Mango (Mangifera indica L.) caused by Fusarium moniliforme var. subglutinans is one of the most destructive diseases, which is a major production constraint in the mango-growing regions of India. In this study, The bioagents Trichoderma viride (Tr1), Trichoderma virens (Tr2) and Trichoderma harzianum (Tr3) were evaluated in culture with the pathogens to monitor the antagonistic effect and their volatile compound and culture filtrates (non-volatile compound). It was found that all the three isolates of bioagents significantly checked the growth of F. moniliforme var. subglutinans. In dual culture, the best result was obtained with T. harzianum followed by T. virens and T. viride. A similar result was also observed in the case of culture filtrates ofTrichoderma spp. The results clearly showed that inhibition of the growth of the fusaria isolates by T. harzianum was significantly superior to T. viride andT.virens. In case of antifungal activity of volatile compounds released by Trichoderma isolates, it was also observed that T. virens was more superior to T.harzianum and T. viride.  相似文献   

11.
Azotobacter chroococcum was grown on cultures containing five carbon sources alone and also in co-cultures with three cellulolytic fungi (Aspergillus niger, Penicillium funiculosum andTrichoderma harzianum). In the absence of fungal species, nitrogenase activity was relatively low. The best nitrogenase activity was recorded in cultures containing faba bean straw followed by that in cultures having wheat straw, sugar cane leaves, carboxymethyl cellulose (CMC) or cellulose. In co-cultures with fungi,Azotobacter showed substantial nitrogenase activity on all tested substrates.Azotobacter —Trichoderma association showed the highest nitrogenase activity.  相似文献   

12.
Several species of the genus Alternaria are involved in leaf spot disease of sunflower, with Alternaria alternata being the dominant species responsible for this disease in Iran and many other sunflower-producing areas, worldwide. The disease causes a progressive destruction of the photosynthetic apparatus, resulting in annual yield loss. The routine disease management strategies are not effective for disease control; hence, alternative measures for disease management are of great interest. In the present study, the efficacy of Trichoderma harzianum T22 and Trichoderma sp. on biological control of the causal agent was evaluated under laboratory conditions. The effect of Trichoderma isolates on dry weight (DW) and radial growth (RG) rate of A. alternata was evaluated using dual culture, volatile and non-volatile cellular metabolites. The results obtained in this study revealed that in both Trichoderma isolates, non-volatile cellular metabolites had the highest inhibitory effect on DW and RG rate of the causal agent. Owing to explicit inhibitory effect of non-volatile cellular metabolites on A. alternata, the inhibitory effects of different concentrations of non-volatile cellular metabolites were evaluated on DW and RG rate of the A. alternata. The obtained results showed that non-autoclaved 75 and 50% concentrations and undiluted (100%) autoclaved non-volatile cellular metabolites from Trichoderma sp. had the highest inhibitory effect on DW and RG rate of the causal agent. The overall results of this study reveal that Trichoderma spp. have excellent efficacy on biological control of A. alternata under laboratory condition; such that, further studies on the potential of Trichoderma spp. in biological control of Alternaria leaf spot disease of sunflower under green house and field conditions are necessary.  相似文献   

13.
Mischke S 《Mycopathologia》1997,137(1):45-52
A bioassay and an empirically derived formula were developed to quantify fungitoxic effects. This bioassay can be easily performed and objectively read, and it is suitable for low-volume samples originating from aqueous or organic solvents. The formula defines the Inhibition Index (I), a single value that incorporates both the response to concentrations of the inhibitory compound and the persistence of inhibition. Antagonistic efficacy of metabolites produced by biocontrol strains of Trichoderma spp. were measured based on inhibition of growth of Rhizoctonia solani. Although the bioassay itself was not influenced by pH or light conditions, these factors affected metabolite production or activity. Aqueous extracts from light-grown germlings of Trichoderma virens inhibited R. solani more than extracts from germlings grown in the dark. Low pH increased the inhibitory activity of extracts from T. virens. Tests of fungal strains developed for biocontrol demonstrated that the bioassay reflected their activity both in the field and in other in vitro tests. The bioassay and formula are readily adapted for use with other fungi.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
Trichoderma spp. have been used as biocontrol agents to protect plants against foliar diseases in several crops, but information from field assays is scarce. In the present work, experiments were carried out to determine the effect of six isolates of Trichoderma harzianum and one isolate of T. koningii on the incidence and severity of tan spot, caused by Pyrenophora tritici-repentis (anamorph: Drechslera tritici-repentis) under field conditions. Significant differences between years, wheat cultivars and treatments were found. In 2003, two of the isolates assayed (T5, T7) showed the best performance against the disease applied as seed treatments or sprayed onto wheat leaves at different stages. The application of six of the treatments on wheat plants significantly reduced disease severity by 16 to 35% in comparison with the control. Disease control provided by isolate T7 was similar to that provided by the fungicide treatment (56% reduction). This is the first report on the efficacy of Trichoderma spp. against tan spot under field conditions in Argentina.  相似文献   

15.
Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma–plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR‐prime phase). Finally, we discuss the ISR‐boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea.  相似文献   

16.
Soil-borne plant pathogens such as Rhizoctonia solani (Kuhn), Pythium ultimum (Trow) and Sclerotinia trifoliorum (Eriks) can reduce grass and forage legume establishment. The potential for biocontrol of these pathogens by Trichoderma fungi was evaluated. Following dual culture assays, nine Trichoderma isolates (five of Trichoderma atroviride and one each of Trichoderma hamatum, Trichoderma koningiopsis, Trichoderma viride and Trichoderma virens) were chosen for assessment in pot experiments. In the presence of R. solani, perennial ryegrass (Lolium perenne L.) emergence was increased by 60–150% by two isolates of T. atroviride and by 35–212% by the isolate of T. virens, with the increase depending on growing medium and amount of pathogen inoculum. Red clover (Trifolium pratense L.) emergence in the presence of S. trifoliorum was significantly increased by two T. atroviride isolates and the T. hamatum isolate. In the presence of P. ultimum, white clover (Trifolium repens L.) emergence was increased by 25–42% by one isolate of T. atroviride and the T. hamatum isolate. However, for all three pasture species, some Trichoderma isolates reduced seedling emergence. Seedling growth (shoot and root fresh weight/plant) of the three pasture species was significantly increased by one or more T. atroviride isolates. On the basis of these results for both disease reduction and growth promotion, four T. atroviride isolates were selected for field assessment as biocontrol agents of soil-borne pathogens of pasture species.  相似文献   

17.
Three fungi, isolated from soil from which Phytophthora was not obtained, were evaluated for antagonism of Phytophthora spp. shown to cause root rot of chestnut in South Australia. Trichoderma hamatum and T. pseudokoningii appeared to inhibit P. cinnamomi by mycoparasitism. with evidence of parallel growth and coiling, and both Trichoderma spp. and Gliocladium virens grew over P. cinnamomi in vitro, preventing further growth of this pathogen. Antibiotics produced by young T. hamatum cultures and G. virens in culture filtrate experiments inhibited growth of P. cinnamomi and P. citricola. with filtrate from 4-day-old cultures of G. virens showing the greatest potential for biocontrol. All three antagonists prevented P. cinnamomi and P. citricola from causing infection symptoms on micropropagated shoots of chestnut cvs Goldsworthy and Buffalo Queen in an in vitro excised shoot bioassay for biocontrol.  相似文献   

18.
The sugar and osmophilic fungal composition of soils amended with five organic substrates (newspaper, orange peel, bromegrass leaves, wheat straw and wood sawdust) was estimated after 2, 4, 6, 8 and 10 weeks using the dilution plate method on glucose and 50% sucrose Czapek's agar media. Wheat straw was the best substrate for total counts of both sugar and osmophilic fungi followed by newspaper, bromegrass leaves, wood sawdust and orange peel. Wood sawdust supported the highest average counts of total sugar fungi, Fusarium, Mucor, Scopulariopsis, Trichoderma and Trimmatostroma spp.; Newspaper, of Aspergillus (8 spp.), Penicillium (4 spp.) and Chaetomium sp. bromegrass leaves of Cladosporium sp., Humicola sp. and Sporotrichum sp.; orange peel, ofAlternaria sp., Circinella sp. and Stachybotrys sp.; and wheat straw, of Botryotrichum sp. and Myrothecium sp. Bromegrass leaves and orange peel supported the highest average counts of total osmophilic fungi, Aspergillus (10 spp.), Cladosporium sp. Paecillomyces sp. and Rhizopus sp.; and of Stemphylium sp., Trichoderma sp., Humicola sp. and Circinella sp. respectively; wheat straw, of Epicoccum sp., Scopulariopsis sp. and Trichothecium sp.; newspaper, of Penicillium (4 spp.) and Alternaria sp.; and wood sawdust of Curvularia sp. and Fusarium (3 spp.). The best colonizers throughout the experimental periods were Aspergilus and Penicillium spp.  相似文献   

19.
Faba bean crops worldwide are often attacked by different diseases, particularly chocolate spot caused by Botrytis fabae Sard. Fungal and bacterial isolates collected from faba bean and barley leaves in Tunisia were evaluated for their antagonistic potential against B. fabae. In a test on detached leaves, the highest rate of decrease in disease severity was scored by Trichoderma viride, followed by T. harzianum, the fungicide Carbendazim then Bacillus subtilis. Under glasshouse conditions, all tested fungi resulted in significant disease severity reduction. T. viride reduced the rate of chocolate spot infestation on leaves and stems by 35% and 31.5%, respectively, when the rate on the control was 100%. For T. harzianum, Carbendazim and B. Subtilis, the rates of infestation on the leaves were 41.7%, 43.1% and 59.7%, respectively. On the stems, T. harzianum scored the lowest rate of 54.2% followed by B. subtilis with 79.2% then Carbendazim with 87.5%. Two consecutive seasons of field trials using the Trichoderma species, B. subtilis and Carbendazim showed significant and consistent reduction in the severity of chocolate spot infestation rates. The highest protection against the disease was obtained from T. viride. Based on these results, Tunisian isolates of Trichoderma spp. can be recommended for developing commercial bio-fungicides for integrated management of chocolate spot.  相似文献   

20.
Bean anthracnose caused by Colletotrichum lindemuthianum is a serious seed borne disease. For devising an effective management strategy, the efficacy of different bioagents, viz. Trichoderma viride, Trichoderma harzianum, Trichoderma hamatum and Gliocladium virens conducted under in vitro and in vivo conditions revealed maximum inhibition of mycelial growth in dual culture (59.48%) and inverted plate (55.98%) with T. viride. All the bioagents overgrew the pathogen and the principal mechanism of mycoparisitism observed was coiling, brusting and disintegration of pathogen hyphae. Culture filtrate from T. viride was found best as it completely inhibited radial growth at 25 and 50% concentration and reduced the spore germination of test fungus significantly. However, lower concentrations of culture filtrate from all bioagents showed little effect on spore germination. Seed application of bioagents was found better as compared to soil application. A maximum increase in seed germination and inhibition of seed borne infection was observed with T. viride followed by T. harzianum under pot culture conditions. T. viride has the maximum potentiality to suppress the spore germination, mycelial growth, seed borne infection of C. lindemuthianum and increased seed germination when compared with the other biocontrol agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号