首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first report about charcoal rot disease in Jordan. Twenty-five Macrophomina phaseolina isolates were collected from infected plants showing typical symptoms of charcoal rot disease. All of the 25 M. phaseolina isolates were pathogenic to cucumber plants under green house effect. The amplification of the isolated DNA from the 25 pathogenic fungal cultures using ITS specific primers (ITS 1?+?ITS 4) showed a single band of 580?bp. There was a significant variation of their mycelial linear growth rate on PDA medium. The 25 M. phaseolina isolates showed a wide heterogeneity in their mycelium colour, microsclerotia distribution, pycnidia formation and chlorate phenotypes. Based on the morphological characterisation, the 25 isolates were grouped into seven different groups as indicated in a dendrogram of their morphological variation. The overall means similarity matrix of the 25 M. phaseolina recovered isolates were 0.58. The means of similarity matrix of the 25 M. phaseolina was in between 0.83 and 0.14. The similarity coefficient between the 25 isolates varies between 0.27 and 1.0.  相似文献   

2.
Studies were conducted in the Bay Region of Somalia to determine the incidence of charcoal rot in sorghum incited by Macrophomina phaseolina and the soil population of M. phaseolina in sorghum fields and areas of native vegetation. Charcoal rot was detected in 34 of 40 sorghum fields. Incidence (percent sorghum hills with diseased plants) in the four regional districts was 21, 70, 20 and 35% (mean of 15 hills/field and 10 fields/district) for Baidoa, Burhakaba, Dinsoore and Quansadhere, respectively. Soil collected from the 40 sorghum fields and from 40 native vegetation sites (10 in each district) all contained M. phaseolina. Mean soil populations for sorghum fields and native vegetation sites were 25.2 and 2.5 microsclerotia g–1 soil, respectively. Soil populations of M. phaseolina in sorghum fields were significantly (p=0.05) different from populations in native vegetation sites and ranged from 7 to 107 and 0.1 to 14.0 microsclerotia g–1 soil, respectively. Incidence of charcoal rot in sorghum was positively correlated with soil populations of M. phaseolina (r=0.53, p= 0.01). Correlation between ratoon failure and disease incidence was also highly significant (r=0.48, p=0.01). Correlation between ratoon failure and soil population of M. phaseolina was not significant (r=0.17, p=0.10). Only one out of 30 seed lots of sorghum grown in the Bay Region contained seed infected with M. phaseolina.  相似文献   

3.
The fungal disease, charcoal root rot, caused by Macrophomina phaseolina is a foremost yield restraining factor of Sorghum bicolor L. around the world. The expression analysis of genes induced in general defense response can endow with clues to reveal major defense mechanisms against pathogen infection in sorghum plant. The role of chitinase and Stilbene synthase in response to M. phaseolina in sorghum was studied under control growth conditions using a real-time polymerase chain reaction. Here, we report the expression analysis of antifungal genes in two cultivars viz. PJ-1430 (resistant) and SU-1080 (susceptible) at different hours after inoculation with M. phaseolina isolate MTCC 2165. Chitinase and stilbene synthase were induced in PJ-1430 within 0 h, 24 h and in SU-1080 in 48 h, 24 h, respectively, after inoculation. However, the expression levels of chitinase and stilbene synthase in resistant cultivar were significantly higher. The results showed that chitinase and stilbene synthase can be effective to enhance resistance to M. phaseolina.  相似文献   

4.
In Egypt, sesame cultivation is subject to attack by wilt and root-rot diseases caused by Fusarium oxysporum f.sp. sesami (Zap) Cast. and Macrophomina phaseolina (Maubl) Ashby causing losses in quality and quantity of sesame seed yield. Bacillus subtilis and Trichoderma viride isolates which were isolated from sesame rhizosphere were the most effective to antagonise fungal pathogens, causing high reduction of hyphal fungal growth. Trichoderma viride was found to be mycoparasitic on Fusarium oxysporum f.sp. sesami and M. phaseolina causing morphological atternation of fungal cells and sclerotial formation. In general, Bacillus subtilis, T. viride, avirulent Fusarium oxysporum isolate and Glomus spp. (Amycorrhizae) significantly reduced wilt and root-rot incidence of sesame plants at artificially infested potted soil by each one or two pathogens. Data obtained indicate that Glomus spp significantly reduced wilt and disease severity development on sesame plants followed by T. viride. Meanwhile, avirulent Fusarium oxysporum isolate followed by Glomus spp. were effective against root-rot disease incidence caused by M. phaseolina. Glomus spp. followed by B. subtilis significantly reduced wilt and root-rot disease of sesame plants. All biotic agents significantly reduced F. oxysporum f.sp. sesami and M. phaseolina counts in sesame rhizosphere at the lowest level. Glomus spp. and the avirulent isolate of F. oxysporum eliminated M. phaseolina in sesame rhizosphere. Meanwhile T. viride was the best agent at reducing F. oxysporum at a lower level than other treatments. Application of VA mycorrhizae (Glomus spp.) in fields naturally infested by pathogens significantly reduced wilt and root-rot incidence and it significantly colonised sesame root systems and rhizospheres compared to untreated sesame transplantings.  相似文献   

5.
Indigenous strains isolated from rhizosphere may contain highly competent genotypes to enhance the plant growth and often perform better than the introduced isolates. The present study deals with the characterisation of plant growth-promoting (PGP) attributes and antagonistic activity of Azotobacter chroococcum AZO2 against Macrophomina phaseolina causing charcoal rot disease and their effect on the growth of sesame (Sesamum indicum L.). Eight strains of Azotobacter were isolated from sesame rhizosphere on nitrogen-free medium, which exhibited significant PGP parameters such as phosphate solubilisation, indole acetic acid and siderophore production. The strain A. chroococcum AZO2 (EU274299) was characterised by 16S rDNA gene sequencing. Amplification of 781 bp nif H gene confirms nitrogenase activity of all the strains. A. chroococcum AZO2 exhibited strong antagonistic activities against M. phaseolina causing 81% colony growth inhibition and resulted in hyphal perforations, empty cell (halo) formation, hyphal twisting, shrinking and lysis of fungal mycelia along with degeneration of sclerotia. A. chroococcum AZO2 produced chitinase that caused degradation and digestion of the cell wall component of M. phaseolina. Different vegetative and reproductive parameters of sesame were found to be enhanced significantly upon application of A. chroococcum AZO2 + half doses of chemical fertilisers. A. chroococcum AZO2 was also found to be an effective root coloniser, plant growth promoter and potential antagonistic bacterium. It can be concluded that A. chroococcum AZO2 strain bears the characteristics of technological applications for inoculant preparation and growth enhancement of sesame besides being utilised as a better PGP bacterium as well as an effective agent for biocontrol of M. phaseolina.  相似文献   

6.
Adzuki bean (Vigna angularis) is an important legume crop in China. Soil‐borne charcoal rot caused by Macrophomina phaseolina (Tassi) Goid is an important and devastating disease of many crops including legumes. During late August and early September, 2014, symptoms similar to charcoal rot were observed on adzuki bean plants in Yulin City of Shanxi Province, and Fangshan County of Beijing, China. This study was conducted to determine the causal agent of the emerging disease on adzuki bean. Four fungal isolates were obtained and identified as M. phaseolina based on morphological and molecular characteristics, including species‐specific primer detection and sequences of internal transcribed spacer (ITS) of nuclear ribosomal DNA. The resulting sequences showed 99% identity with more than 60 M. phaseolina strains from diverse hosts. The virulence on adzuki bean was verified using pathogenicity tests, producing symptoms similar to those observed in the fields. To our knowledge, this is the first report of M. phaseolina causing charcoal rot on adzuki bean.  相似文献   

7.
Biological control of charcoal root rot disease caused by Macrophomina phaseolina in chickpea was studied by using Streptomyces sp. S160. This biocontrol agent (BCA) inhibited the mycelial growth of M. phaseolina by 50 % in vitro and significantly reduced charcoal rot incidence in the greenhouse by 33.3 %. The greenhouse experiment revealed that seed treatment along with soil application supported the highest germination (88.6 %), vigor index (7326.91) and reduced root rot incidence (12.5 %) in comparison to seed treatment and soil application alone. BCA enhanced the growth and helped in inducing resistance against charcoal rot disease of chickpea caused by M. phaseolina by increasing activity of defense-related enzymes in chickpea plants, leading to the synthesis of defense chemicals in plants. BCA (Streptomyces sp. S160) was also characterized and identified by using polyphasic approaches including 16S rDNA sequencing.  相似文献   

8.
Charcoal rot, caused by Macrophomina phaseolina, is the most common yield reducing constraint in sorghum. In the present study, eight cultivars of Sorghum bicolor were screened against M. phaseolina to determine its effects on several growth parameters as well as the content of phenols, salicylic acid (SA), total protein and peroxidase activity and were examined for their relationship, with disease resistance. Out of the eight cultivars tested, PJ-1430 was the most resistant and SU-1080, the most susceptible. The roots of plants were more affected by the pathogen than the shoots. The cultivar PJ-1430 produced a higher plant root and shoot dry mass and was associated with higher polyphenols, SA, peroxidases and thus sustained less oxidative damage whereas SU-1080 experienced maximum oxidative damage, so was considered susceptible to charcoal rot. A positive relationship was observed among various biochemical parameters and disease resistance of cultivars PJ-1430 and SU-1080.  相似文献   

9.
Pathogenesis-related (PR) proteins are induced in response to pathogen attack. In the present study, the induction of PR proteins in response to the fungal pathogen Macrophomina phaseolina was investigated in 15-day- and 1-month-old plants of Vigna aconitifolia with resistant and susceptible cultivars. Inoculation of the fungal pathogen resulted in the enzyme activity gradually increased throughout the experimental period of 168 h compared to control. However, the activation of β-1,3-glucanase and chitinase was more rapid and to a greater extent in the resistant FMM-96 cultivar as compared to susceptible RM0-40 and CZM-3 cultivars. Furthermore, the western blot analysis revealed the presence of 33- and 30-kDa bands of β-1,3-glucanase and chitinase in induced moth bean plants, respectively. The possible implications of these findings as part of the general defense response of moth bean plants against the fungal pathogen (M. phaseolina) have been discussed.  相似文献   

10.
Sixty-one isolates of Macrophomina phaseolina were characterised on the basis of different morphological characters to study the variability in the population. PCA analysis extracted three main components, microsclerotia, texture and colour, from the population that described the variability in the population most appropriately. Colour of the isolates and the presence of the microsclerotia have a significant effect on the area under disease progress curve. Isolates with the production of microsclerotia (M+) were more aggressive as compared to isolates with no production of microsclerotia (M?). The study has brought out pathogenic variation in M. phaseolina, thus better understanding of host pathogen relationship to identify physiologic races in the breeding programme.  相似文献   

11.
M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute) plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2′,7′-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.  相似文献   

12.
Cabbage (Brassica oleracea var. capitata) is an important vegetable crop among crucifers. It is affected by a bacterial disease known as black rot. Black rot is caused by Xanthomonas campestris pv. campestris a disease of worldwide importance. The present study highlights the effect of biotic inducer—Pseudomonas fluorescens—and an abiotic inducer—2,6‐dichloro‐isonicotinic acid—in combating black rot, followed by their effect on the seed treatment and disease incidence, role of antioxidant enzymes followed by validation of the defence‐related genes by quantitative real‐time PCR. The resistant (Pusa mukta) and the highly susceptible (NBH boss) cabbage cultivars were analysed for defence‐related enzymes such as peroxidase and superoxide dismutase. An increase in total peroxidase and superoxide dismutase activity was observed upon inoculation with Xcampestris pv. campestris. The activity was greater in resistant cultivar when compared to susceptible ones. Both enzyme activity assays and qPCR analyses for the expression of the defence genes in susceptible and resistant cultivars demonstrated that the peroxidase gene was up‐regulated in resistant cultivar compared to susceptible cultivar. The present study proved that P. fluorescens‐induced resistance against X. campestris pv. campestris in cabbage seedlings is more efficient as compared to the use of INA—abiotic inducer.  相似文献   

13.
Summary Germination of microsclerotia ofMacrophomina phaseolina was observed at O2 concentrations of 16% or higher in autoclaved soil. Germination was delayed but otherwise unaffected as O2 decreased from 21 to 16% and was in all cases complete in 32 hours. Laboratory-produced microsclerotia consistently germinated more rapidly and seemed more independent of O2 concentrations within the range that permitted germination than naturallyproduced microsclerotia.Population changes in soil as measured by microsclerotial counts were inversely correlated with depth of interment and reduced O2 concentration. Our inability to detect significantly growth responses ofM. phaseolina in non autoclaved soil was apparently related to limited O2 although other possibilities are discussed.Contribution of the Missouri Agricultural Experiment Station Scientific Journal Series No. 9124.  相似文献   

14.
The objective of this study was to determine the potential of antagonistic bacteria to control charcoal root rot of coniferous seedlings caused by Macrophomina phaseolina (Tassi) Goid. in forest nurseries. Bacterial isolates were collected from nurseries located between Region Metropolitana and the VIII Region of Chile. Antagonists were initially evaluated in in vitro assays based on the ability to inhibit mycelial growth of M. phaseolina, and subsequently in two trials in a Pinus radiata nursery with a natural infestation of the pathogen. For nursery trials, the isolates were selected according to in vitro and field trial pathogen controls. The bacteria were applied as seed treatments and via water irrigation. The trials were conduced in a completely randomized block design. Among 568 bacterial isolates tested in vitro, 19.8% displayed some capacity to inhibit the mycelial growth of M. phaseolina, with inhibition between 1.7% and 67.6%. In the first nursery trial, Bacillus amyloliquefaciens VII 015, Bacillus pumilus IX 030, Bacillus stearothermophilus TM 008 and other two Bacillus sp. (VI 009 and IX 049) strains, significantly reduced the total, pre- and post-emergency mortality of seedlings, but no isolate reduced the incidence of M. phaseolina in seedlings. In the second trial, Bacillus sp. IX 049, VI 099, B. subtilis (IX 007) and a non-identified isolate V 005, decreased the incidence of charcoal root rot. It is concluded that the best of these bacterial antagonists have the potential to control M. phaseolina in P. radiata nurseries.  相似文献   

15.
Five strains of Streptomyces sp. were evaluated in vitro for their ability of inhibiting the mycelial growth of Macrophomina phaseolina, the causal agent of root rot of mung bean (Vigna radiata L.). Among the Streptomyces sp. strains tested, PDK showed the maximum in vitro inhibition of mycelial growth of M. phaseolina and recorded an inhibition zone of 21?mm. The strains CBE, MDU, SA and ANR recorded inhibition zones of 18, 16, 13 and 11?mm, respectively. These Streptomyces sp. strains were tested for their growth-promoting efficiency on mung bean seedlings. Among them, CBE and PDK recorded the maximum increase in shoot length, root length and seedling vigour compared with control, followed by MDU. Three Streptomyces sp. strains (CBE, MDU and PDK) that showed higher levels of inhibition of growth of M. phaseolina in dual culture assay and plant growth-promoting activity were tested for their biocontrol activity against root rot under greenhouse and field conditions. Seed treatment or soil application with powder formulation of Streptomyces sp. strains CBE, MDU and PDK was effective in controlling root rot disease; but, combined application through seed and soil increased the efficacy in both the greenhouse and field trials. Among the treatments, seed treatment plus soil application with powder formulation of Streptomyces sp. strain CBE proved to be most effective, which reduced the root rot incidence from 26.8% (with non-bacterised seeds) to 4.0% in Trial I and from 32.0 to 4.9% in Trial II. The above treatment recorded the highest yield in both the field trials, and the yield increase was 78 and 74% over control in Trial I and Trial II, respectively. Isozyme analysis of the Streptomyces sp.-treated plants indicates that seed treatment plus soil application strongly induce the activities of peroxidase (PO-1 and PO-2) and polyphenol oxidase (PPO-2 and PPO-3) in mung bean. Among the three strains tested, Streptomyces sp. strain MDU- treated plants showed higher levels of activities of PO and PPO. Based on the above findings, it can be concluded that both the direct inhibition of pathogen and induced resistance might be involved in the control of root rot of mung bean by Streptomyces sp.  相似文献   

16.
Abstract

The effect of endophytic Pseudomonas fluorescens isolates Endo2 and Endo35 on induced systemic disease protection against dry root rot of black gram (Vigna mungo L. Hepper) caused by Macrophomina phaseolina was investigated under glasshouse conditions. When the bacterized black gram plants were inoculated with dry root rot pathogen, the activities of peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL) were stimulated in addition to accumulation of phenolics and lignin. Activity of phenylalanine ammonia-lyase (PAL) reached the maximum 24 h after pathogen challenge inoculation, whereas the activities of PO and PPO reached the maximum at 72 h and 48 h, respectively. Isoform analysis revealed that a unique PPO3 isozyme was induced in bacterized black gram tissues inoculated with the pathogen. Phenolics were found to accumulate in bacterized black gram tissues challenged with M. phaseolina one day after pathogen challenge. The accumulation of phenolics reached maximum at the third day after pathogen inoculation. Similar observation was found in the lignin content of black gram plants. In untreated control plants, the accumulation of defence enzymes and chemicals started at the first day and drastically decreased 3 days after pathogen inoculation. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restricting invasion of Macrophomina phaseolina in black gram roots.  相似文献   

17.
Four defective (AFM) mutants of Paenibacillus sp. HKA-15 that no longer produced the peptide antifungal metabolites were developed through ethyl methane sulfonate (EMS) mutagenesis and used for in vivo experimentation. Reduced percentage of seed germination by mutants DM1 and DM2 (22.5% and 25%, respectively) and a high percent of disease incidence (69.3% and 67%, respectively) compared to wild-strain HKA-15 (80% seed germination and 27% disease incidence) indirectly indicated the role of peptide metabolite on disease suppression. Plants treated with AFM clones showed stunted growth and the presence of pepperlike microsclerotia in the stem tissues. Light and scanning electron microscopic studies clearly showed the effect of peptide antibiosis on hyphal morphology. Exposure to crude extracts of antibiotics produced abnormal contraction of fungal cytoplasm, granulation, and fragmentation of hyphal mycelia and cell lysis. The presence of bacterial cells in the lumen of degrading fungal mycelium suggested a direct involvement of Paenibacillus sp. HKA-15 in the lysis of Rhizoctonia bataticola.  相似文献   

18.
The of aim of this study was to evaluate the potentiality of the native isolate of Trichoderma harzianum from IARI farm for the management of post-flowering stalk rot of maize and improvement of plant health. The treatment was tried as a seed treatment with the potent commercial formulation Kalisena SD (Aspergillus niger), neem kernel powder and effective fungicides (Thiram, Carbendazim, Captan) for comparison of its efficacy. The minimum disease was recorded in plots treated with native isolate both due to Fusarium moniliforme and Macrophomina phaseolina. The fungicides Carbendazim and Thiram ranked second in controlling the disease due to F. moniliforme and M. phaseolina, respectively. Plant health with respect to vigour and plant stand were found to be better than those of all the other treatments. It is concluded that the native isolate of T. harzianum may be used for maintaining good plant health and managing post-flowering stalk rot of maize.  相似文献   

19.
Effect of organic soil amendments on the incidence of stalk rot of maize   总被引:3,自引:0,他引:3  
Five organic materials, Calopogonium sp. leaves, rice straw, mixed wood saw dust of Terminalia sp. Triplochyton sp. and Kaya sp., fresh guinea grass and poultry manure were added to soil with a recent history of high stalk rot of maize caused by Macrophomina phaseolina and Fusarium moniliforme. The two stalk rot organisms reacted differently to the organic amendments. All the amendments produced significantly less Fusarium stalk rot disease than the unamended control. Amendment of soil with fresh Calopogonium leaves was almost ineffective in controlling the incidence of Macrophomina phaseolina. Organic amendment with poultry manure increased the disease casued by M. phaseolina. The other amendments appeared to be equally effective in checking the disease. Increased microbial population due to amendment may play some role in disease suppression.  相似文献   

20.
Abstract

A study was conducted in the greenhouse to examine the resistance of three soybean cultivars against root-infecting fungi, and to determine the role of five strains of Pseudomonas aeruginosa in protecting the roots from these fungal pathogens. In this study soybean cv RAWAL was found to be less susceptible against charcoal rot fungus Macrophomina phaseolina than cvs PARC and BRAGG. Most of the strains of P. aeruginosa used as seed dressing significantly reduced M. phaseolina and Rhizoctonia solani infection on all three cvs PARC, BRAGG and RAWAL (p < 0.05). Most of the strains of P. aeruginosa were effective on cv PARC against Fusarium solani infection, while on cv BRAGG P. aeruginosa strain Pa3, and on cv RAWAL strain Pa5 were effective. Both strains Pa3 and Pa22 gave maximum plant height and fresh weight of shoots, respectively on cvs PARC and BRAGG than other strains. These characteristics make these P. aeruginosa strains good candidates for use as biocontrol agents against soil-borne plant pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号