首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The biological traits of the entomopathogenic nematodes (EPNs), Steinernema carpocapsae and Heterorhabditis bacteriophora, against the larvae of the leopard moth, Zeuzera pyrina were evaluated in the laboratory. The traits included pathogenicity, penetration potential as well as foraging behaviour. Plate assays were performed using a range of EPN concentrations (5, 10, 20, 50 and 100 infective juveniles (IJs) per larva). The LC50 values for S. carpocapsae and H. bacteriophora were 6.4 and 8.4 IJs larva?1 after 72 h. Both EPN species caused high mortality in branch experiments. Significantly higher mortality rates occurred in the larger larvae after exposure to S. carpocapsae. Both EPN species successfully penetrated the Z. pyrina larvae as well as larvae of Galleria mellonella L. (Lepidoptera: Galleridae).The proportional response of H. bacteriophora to host-associated cues was strongly higher than S. carpocapsae in Petri dishes containing agar 1, 12 and 24 h after EPN application. These results highlight the efficiency of EPNs for the control of Z. pyrina larvae. However, due to the cryptic habitat of Z. pyrina larvae in their galleries in the trees, field trails need to be conducted to further evaluate this potential.  相似文献   

2.
The susceptibility of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) to native and commercial strains of entomopathogenic nematodes (EPNs) was studied under laboratory conditions. Native strains of EPNs were collected from northeastern Iran and characterised as Steinernema feltiae and Heterorhabditis bacteriophora (FUM 7) using classic methods as well as analysis of internal transcribed spacer (ITS) and D2/D3 sequences of 28S genes. Plate assays were performed to evaluate the efficiency of five EPN strains belonging to four species including Steinernema carpocapsae (commercial strain), S. feltiae, Steinernem glaseri and H. bacteriophora (FUM 7 and commercial strains). This initial assessment with 0, 75, 150, 250, 375 and 500 IJs/ml concentrations showed that S. carpocapsae and H. bacteriophora caused the highest mortality in both larval and prepupal stages of P. operculella, PTM. Thereafter, these three strains (i.e. S. carpocapsae, H. bacteriophora FUM 7 and the commercial strains) were selected for complementary assays to determine the effects of soil type (loamy, loamy–sandy and sandy) on the virulence of EPNs against the second (L2) and fourth instar (L4) larvae as well as prepupa. A soil column assay was conducted using 500 and 2000 IJs in 2-ml distilled water. Mortality in the L2 larvae was not affected by the EPN strain or soil type, while there was a significant interactive effect of nematode strains and soil type on larval mortality. The results also showed that EPN strains have higher efficiency in lighter soils and caused higher mortality on early larvae than that in loamy soil. In L4 larvae, mortality of PTM was significantly influenced by nematode strain and applied concentrations of infective juveniles. The larval mortality induced by S. carpocapsae was higher than those caused either by a commercial or the FUM 7 strain of H. bacteriophora. Prepupa were the most susceptible stage.  相似文献   

3.
The low survival time and diminished infectivity by entomopathogenic nematodes (EPNs) from granular formulations limit their efficiency against agricultural insect pests. This study determined the benefit of pre-acclimating infective juveniles (IJs) of Steinernema glaseri (NJ-43 strain) on extending their mean survival time (STm) in diatomaceous earth (DE) pellets and increasing their infectivity against Phyllophaga vetula. The IJs were reared in Galleria mellonella larvae placed in Petri dishes containing plaster of Paris (PP) or modified White traps (WTs). Pelletisation was performed in a machine operating on the principle of laminar flow using DE Celite® 209. Pellets were stored at room temperature (23?±?3°C) and high relative humidity (96–100%). IJs harvested from WTs between the 3rd and the 5th days after the onset of emergence were more infective on P. vetula and pre-acclimation of S. glaseri in PP increased significantly its STm in the pellets; from 23.1 to 34.5 days, compared with non-pre-acclimatised IJs from WTs. However, juveniles with or without pre-acclimation formulated in DE pellets failed to achieve significant control of P. vetula. These results are discussed in light of the relationship between EPN survival and host infection by EPNs with possible effects of the formulation in DE pellets.  相似文献   

4.
Abstract

The survival of Steinernema masoodi and S. carpocapsae (Rhabditida: Steinernematidae) was investigated after foliar application on pigeonpea and chickpea twigs, respectively, at flowering and fruiting stage. The concentration used was 2500 infective juveniles (IJs)/ml water for both the species. On pigeonpea, the mean number of IJs of S. masoodi found alive were 303.4, 158.4 and 51.6 after 0, 30 and 60 minutes of spray in evening hours whereas 236.1, 44.4 and 6.8 IJs were found alive when sprayed in morning hours, respectively. S. masoodi survival at 30 minutes post-spray in the morning was on par with 60 minutes post-spray in the evening hours. On chickpea, the mean numbers of IJs of S. carpocapsae were 165.4, 65.8, 4 and 0 at 0, 1, 2 and 3 h post-spray in the morning hours whereas in the evening spray, 159.4, 111.8, 83.8 and 11.4 IJs found alive at 0, 1, 2 and 3 h post-spray, respectively. Overall, nematode survival in the evening hours was higher compared to morning spray at a given time. Addition of glycerine and UV retardant improved the survival of nematode. Results indicated that survival rate of IJs decreased fast and viability remained up to 3 h and in evening hours very few nematodes remained alive. Serious attempts are needed to improve the survival of nematodes after foliar spray by adding efficient adjuvant, humectant, antidesiccant and/or UV retardant for the management of aerial insect pests.  相似文献   

5.
Codling moth (CM), Cydia pomonella (L.) is the most serious pest of apple and other pome fruit worldwide. In temperate climates, diapausing cocooned larvae make up 100% of the population. Control of this stage would reduce or eliminate damage by first generation CM in late spring and early summer. Entomopathogenic nematodes (EPNs) are good candidates for control of CM in the cryptic habitats where the larvae overwinter. The two predominant limiting factors for EPNs are adequate moisture and temperatures below 15°C. Formulation that maintains moisture and enables survival of EPN infective juveniles (IJs) until they can infect overwintering larvae would significantly improve their utility for protection of apple, pear and walnut. In laboratory studies conducted in moist mulch (consisting of apple and conifer wood), Galleria mellonella (L.) larvae infected with Steinernema carpocapsae (Weiser), S. feltiae (Filipjev), or Heterorhabditis bacteriophora Poinar and coated with starch and clay, produced mean mortalities of 42, 88, and 24%, respectively in CM larvae. Mulched field plots treated with formulated S. carpocapsae- or S. feltiae-infected G. mellonella larvae, then followed by an application of wood flour foam as an anti-desiccant, resulted in 56 and 86% mortality, respectively. Comparative tests of aqueous suspensions of S. carpocapsae IJs applied to cardboard bands on apple tree trunks followed by water, fire retardant gel or foam resulted in 11, 35, and 85% respective mortalities. Identical tests with S. feltiae resulted in 20, 19, and 97% respective mortalities. Our research with cadaver formulations of EPNs in mulch and aqueous suspensions on tree trunks combined with anti-desiccant agents, demonstrated significant improvement in larvicidal activity for diapausing cocooned CM larvae.  相似文献   

6.
Abstract

The infectivity of seven entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae were tested against the last instar larvae of the cotton leafworm, Spodoptera littoralis (Biosd.) and the greater wax moth, Galleria mellonella (L.) in a Petri dish and sand column assay. Exposure of the insect species was done at a dose of 100 IJ/ ml. Heterorhabditis sp. ELG., H. indica, Heterorhabditis sp. ELB. were the highest in activity, they gave a 100% mortality to S. littoralis larvae in a Petri dish assay 24 h postexposure. The rest of the strains tested gave mortalities ranged between 50 and 90% at 24 h then 100% after 48 h postexposure . In the sand-column assay strains, Heterorhabditis sp. ELB., S. riobravae and S. carpocapsae were the highest in activity against S. littoralis with 100% mortality within 24 h postexposure. The results of infectivity against G. mellonella showed that H. indica was the highest in the Petri dish assay and H. egyptii was the highest in the sand column assay with 100% mortality after 24 h of exposure. The penetration rate as an indicator of entomopathogenic nematode infection was also evaluated. The highest value was recorded for Heterorhabditis sp. ELB. (62.3%) and S. carpocapsae (61.4%) against S. littoralis in both the Petri dish and sand-column assay, respectively. In the case of G. mellonella, the highest value of penetration was recorded for Heterorhabditis sp. ELG. (68.3%) and S. riobravae (65.00%) in both the Petri dish and sand-column assay, respectively.  相似文献   

7.
Entomopathogenic nematode (EPN) occurrence in soil from natural areas and crop field edges from La Rioja (northern Spain) was compared using two insects as baits: Galleria mellonella (Lepidoptera: Pyralidae) and Spodoptera littoralis (Lepidoptera: Noctuidae). Both insects trapped Steinernema feltiae, S. kraussei and S. carpocapsae, with G. mellonella being more efficient than S. littoralis recording 5.4 and 2.6% of positive soil samples, respectively. EPN recovery frequency and abundance obtained with G. mellonella were not statistically different between natural and crop field edges values; however, S. littoralis was more successful trapping EPNs from crop field edges. Statistical differences were observed for recovery frequency recorded by both hosts in natural areas. Significant differences in larval mortality between both insects were not observed. The use of S. littoralis in entomopathogenic nematode surveys is discussed.  相似文献   

8.
Single infective juveniles of Heterorhabditis bacteriophora, H. megidis (Nematoda: Heterorhabditidae), Steinernema arenarium, S. carpocapsae and S. feltiae (Nematoda: Steinernematidae) were used to infect single Galleria mellonella (Lepidoptera: Pyralidae) larvae. Four parameters of entomopathogenic nematodes pathogenicity were assessed: the mortality of insects, infectivity of nematodes, number of nematodes established per single G. mellonella, and degree of infective juveniles colonization (percent of infective juveniles which intestine was colonized by symbiotic bacteria). The accuracy, repeatability, and versatility for different species of EPNs in bioassay arenas were compared. Our modifications of the original methods yielded ~ 50% higher efficiency of infective juveniles in cell culture plates and > 20% higher efficiency in centrifuge test tubes. The efficiency of nematodes in cell culture plates (39–77%) was relatively low, especially in the case of Heterorhabditis spp. In the bioassay arena, infective juveniles migrated between cells. The results of our studies indicate that the pathogenicity of EPNs should be assessed in centrifuge test tubes. In these arenas, the infectivity of single IJs was ~ 90% for Heterorhabditis spp. and ~ 95% for Steinernema spp. The degree of colonization of the EPN isolates by symbiotic bacteria was in the range of 96–98%.  相似文献   

9.
Mustard (Brassica and Sinapis spp.) green manures tilled into the soil preceding potato crops act as bio-fumigants that are toxic to plant–parasitic nematodes, providing an alternative to synthetic soil fumigants. However, it is not known whether mustard green manures also kill beneficial entomopathogenic nematodes (EPNs) that contribute to the control of pest insects. We used sentinel insect prey (Galleria mellonella larvae) to measure EPN infectivity in Washington State (USA) potato fields that did or did not utilize mustard green manures. We found a trend toward lower rates of EPN infection in fields, where mustard green manures were applied, compared to those not receiving this cultural control method. In a series of bioassays we then tested whether the application of two mustard (Brassica juncea) cultivars, differing in glucosinolate levels, disrupted the abilities of a diverse group of EPN species to infect insect hosts. Mustard-exposure trials were conducted first in laboratory arenas where EPNs were exposed to mustard extracts suspended in water, and then in larger microcosms in the greenhouse where EPNs were exposed to green manure grown, chopped, and incorporated into field soil. In all trials we used G. mellonella larvae as hosts and included multiple EPN species in the genera Steinernema (Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri, and Steinernema riobrave) and Heterorhabditis (Heterorhabditis bacteriophora, Heterorhabditis marelatus, and Heterorhabditis megidis). In the laboratory, EPN infection rates were lower in arenas receiving mustard extracts than the control (water), and lower still when EPNs were exposed to extracts from plants with high versus low glucosinolate levels. Results were nearly identical when mustard foliage was soil-incorporated into greenhouse microcosms, except that the negative effects of mustards on EPNs developed more slowly in soil. Significantly, in arenas of both types one EPN species, S. feltiae, appeared to be relatively unaffected by mustard exposure. Together, our results suggest that the use of mustard bio-fumigants for the control of plant–parasitic nematodes has the potential to interfere with the biocontrol of insect pests using EPNs. Thus, it may be difficult to combine these two approaches in integrated pest management programs.  相似文献   

10.
The restriction of effective insecticides has facilitated the woolly apple aphid (WAA) Eriosoma lanigerum to become a major pest in apple orchards in Western Europe. It has also promoted alternative control strategies such as the use of entomopathogenic nematodes (EPN). We evaluated the control capacity of six commercially available EPN, viz. Heterorhabditis bacteriophora, Heterorhabditis megidis, Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri and Steinernema kraussei. We assessed the potential of these EPN to colonize and parasitize E. lanigerum in an in vitro multiwell test. Only S. carpocapsae caused higher mortality (20–40%) than the control treatment (water). However, the mortality observed with S. carpocapsae was found to be a test artefact and not induced by its specific entomopathogenic activity. A similar mortality range was recorded when applying the non‐entomopathogenic nematode Pratylenchus thornei in the same multiwell test set‐up. This result warrants careful interpretation of parasitism in these artificial test conditions. The failure of EPN activity was supported in further experiments by frequently finding S. carpocapsae inside living WAA. The presence of the EPN had no effect on aphid reproduction as numbers of ‘large’ embryos in EPN‐colonized and non‐colonized females were similar. In addition, the dauer juveniles did not recover in E. lanigerum reflecting that S. carpocapsae could not develop inside the WAA. We further demonstrated that growth of the EPN‐symbiotic bacteria Xenorhabdus nematophila and Photorhabdus luminescens is inhibited by the body fluid of the WAA, and we speculate that this antibacterial activity is the cause of the unsuccessful parasitization of the WAA by the EPN. This antibiosis inside the body of E. lanigerum would prevent production of the endotoxins by the bacterial symbionts that are essential for entomopathogenicity and insect control.  相似文献   

11.
《Journal of Asia》2022,25(2):101880
Bioassays to evaluate the mortality, virulence and reproduction potentials of four indigenous EPN strains, S-PQ16, S-BM12, H-KT3987 and H-CB3452 on insect larvae of mealworm (Tenebrio molitor) and greater wax moth (Galleria mellonella) revealed the highest mortality rates of two insect larvae at the highest inoculation dose of 100 IJs to range from 89 to 100 percent and 94.3–100 percent at 48 h after inoculation, respectively. Virulence was high for all nematode strains, with LC50 values between 29.6 and 47.3 IJs/insect host. The highest IJ yields were different between nematode strains and insect host, from 66.8 × 103 IJs (S-PQ16) to 118.6 × 103 IJs (H-KT3987) on T. molitor, and from 54.2 × 103 IJs (S-BM12) to 163.3 × 103 IJs (H-KT3987) on G. mellonella. The culturing cost in terms of food expenditure for rearing insect larvae varied between insect larvae and nematode strains, from 6.76 to 26.63 USD per billion IJs for nematode strains cultured on T. molitor larvae and from 3.54 to 7.81 USD per billion IJs for nematode strains cultured on G. mellonella larvae. The full cost for a nematode product of 2.5 × 109 IJs per hectare, produced through in vivo mass culturing, of the most efficient nematode strain, H-KT3987, was 191.3 USD, slightly cheaper than 199.4 USD for the same nematode product produced through in vitro mass culturing.  相似文献   

12.
In a series of bioassays, thirty-one isolates that were collected from diverse locations in northern China and the laboratory kept isolate Steinernema carpocapsae All, were compared in order to select superior isolates for biological control of Bradysia odoriphaga. Virulence of the isolates against B. odoriphaga was significantly different among nematode isolates. Tolerance of infective juveniles (IJs) to heat, cold, and desiccation differed significantly among and within species. Strains from S. carpocapsae, S. ceratophorum, S. longicaudum, Heterorhabditis indica, and H. bacteriophora were more heat tolerant than strains from S. feltiae, S. hebeiense, S. monticolum, and H. megidis. Heterorhabditis megidis, H. bacteriophora, and S. carpocapsae showed better cold tolerance than the other species. High desiccation tolerance was recorded for S. carpocapsae, S. hebeiense, and S. ceratophorum. The infectivity of IJ of these species against Galleria mellonella larvae was not significantly different between the treated and non-treated IJ after the nematodes had been exposed to 40 °C for 2 h, −5 °C for 8 h or 25% glycerin for 72 h. Nematode survival was significantly affected by exposure time and IJ concentration when exposed to 40 °C or −5 °C. All nematode isolates lost their infectivity against G. mellonella after exposure to −5 °C for 16 h, except for H. megidis LFS10, which had a low infectivity of 3.3%. A hierarchical classification analysis classified the isolates in four main clusters. The fourth cluster, composed of 13 isolates, grouped the isolates that scored well for most traits.  相似文献   

13.
Dispersal of organisms is influenced by environmental and innate population variability. It results in redistribution of populations with potential consequences for gene flow, population resilience and stability, and evolutionary diversification of traits in response to specific selection pressures. However, dispersal behavior in soil-dwelling organisms is understudied. Species of entomopathogenic nematodes, a group of soil-inhabiting lethal insect parasites used in biological pest control show a dichotomy in foraging behavior. Some species have been classified as ambushers while others as cruisers. We previously discovered that the ambush foraging Steinernema carpocapsae possesses a small group of sprinters that disperse faster than the fastest moving cruisers. In this study, we genetically selected S. carpocapsae for enhanced dispersal in the absence of hosts by capturing the fastest and farthest reaching infective juveniles (IJs) emanating from a nematode-infected Galleria mellonella cadaver, in soil. S. carpocapsae showed positive response to selection for dispersal with 13–23 and 21–37 fold increase in the percent IJs dispersing to the farthest distance from the source cadaver, after five and ten rounds of selection, respectively. There was also a significant increase in the average displacement of the selected lines (6.85–7.54 cm/day) than the foundation population (5.54 cm/day) maintained by passing through G. mellonella larvae in Petri dishes. The overall mean realized heritability for dispersal was 0.60. The farthest reaching IJs of the selected lines comprised more males (72 %) than the foundation population (44 %) at most time points. Trade-offs associated with enhanced dispersal included reduced reproduction capacity and nictation ability, a trait associated with ambush foraging. In conclusion, this study revealed the costs and benefits associated with selection for enhanced dispersal in a soil-dwelling insect parasite, enhancing our understanding of the evolution of new behavioral patterns, which could have important implications in biological control.  相似文献   

14.

Background  

Symbioses between invertebrates and prokaryotes are biological systems of particular interest in order to study the evolution of mutualism. The symbioses between the entomopathogenic nematodes Steinernema and their bacterial symbiont Xenorhabdus are very tractable model systems. Previous studies demonstrated (i) a highly specialized relationship between each strain of nematodes and its naturally associated bacterial strain and (ii) that mutualism plays a role in several important life history traits of each partner such as access to insect host resources, dispersal and protection against various biotic and abiotic factors. The goal of the present study was to address the question of the impact of Xenorhabdus symbionts on the progression and outcome of interspecific competition between individuals belonging to different Steinernema species. For this, we monitored experimental interspecific competition between (i) two nematode species: S. carpocapsae and S. scapterisci and (ii) their respective symbionts: X. nematophila and X. innexi within an experimental insect-host (Galleria mellonella). Three conditions of competition between nematodes were tested: (i) infection of insects with aposymbiotic IJs (i.e. without symbiont) of both species (ii) infection of insects with aposymbiotic IJs of both species in presence of variable proportion of their two Xenorhabdus symbionts and (iii) infection of insects with symbiotic IJs (i.e. naturally associated with their symbionts) of both species.  相似文献   

15.
Seasonal parasitism of Habrobracon hebetor (Say) on Helicoverpa armigera (Hübner) in chickpea was studied for three consecutive years. Parasitism by H. hebetor on larvae of H. armigera reached 12.3%. The parasitoid maintained reproductive activity on H. armigera from February to April coinciding with pod formation and maturation stages of the crop. In laboratory assays, we investigated the suitability of larval instars of H. armigera to the parasitoid H. hebetor. This parasitoid attacked third to sixth instars, though fourth and fifth instar larvae were found most suitable with 100% parasitism and development to adults. Parasitoid developmental time was longest in fifth instar (9.1 days) compared to other instars (8.1–8.9 days). Fifth instar larvae resulted in highest numbers of cocoons and adult emergence. In addition, suitability of seven lepidopteran species to H. hebetor was investigated. Corcyra cephalonica, Galleria mellonella and H. armigera were the most suitable hosts with 100% parasitism and development to adults. It was followed by Maruca vitrata and Autographa nigrisigna with 60–76.7% and 40–70% parasitism and parasitoid developmental success, respectively. Though there was 23.3% parasitism, there was no parasitoid development in Spodoptera litura. No parasitism was recorded in Spilarctia obliqua. Development of H. hebetor was most rapid in C. cephalonica (8.7 days), and longest in G. mellonella (9.3 days). Parasitoids that developed on these hosts resulted in highest numbers of cocoons and adult emergence. The parasitoid could be exploited for the biological control of H. armigera in a chickpea ecosystem.  相似文献   

16.
Survival of infective juveniles of Steinernema carpocapsae and Steinernema glaseri gradually declined during 16 weeks of observation as the tested soil pH decreased from pH 8 to pH 4. Survival of both species of Steinernema dropped sharply after 1 week at pH 10. Survival or S. carpocapsae and S. glaseri was similar at pH 4, 6, and 8 during the first 4 weeks, but S. carpocapsae survival was significantly greater than S. glaseri at pH 10 through 16 weeks. Steinernema carpocapsae and S. glaseri that had been stored at pH 4, 6, and 8 for 16 weeks, and at pH 10 for 1 or more weeks were not infective to Galleria mellonella larvae. Steinernema carpocapsae survival was significantly greater than that of S. glaseri at oxygen:nitrogen ratios of 1:99, 5:95, and 10:90 during the first 2 weeks, and survival of both nematode species declined sharply to less than 20% after 4 weeks. Survival of both nematode species significantly decreased after 8 weeks as the tested oxygen concentrations decreased from 20 to 1%, and no nematode survival was recorded after 16 weeks. Steinernema carpocapsae pathogenicity was significantly greater than that of S. glaseri during the first 2 weeks. No nematode pathogenicity was recorded at oxygen concentrations of 1, 5, and 10% after 2 weeks and at 20% after 16 weeks.  相似文献   

17.
The infectivity of entomopathogenic nematode (EPN), Steinernema mushtaqi was tested against legume pod borer, Maruca vitrata, tobacco caterpillar, Spodoptera litura, blue butterfly, Lampides boeticus, red hairy caterpillar, Amsacta moorei, brown bug, Clavigralla gibbosa, mealy bug, Centrococcus somatics, fruit borer, Earias vittella and green bug, Nezara viridula larvae and in vivo mass production of the above-tested species of EPN have been carried out during 2008. S. mushtaqi was found to be more pathogenic to A. moorei, as it brought about 100% mortality within 48 h, than to S. litura, L. boeticus, N. viriduala and E. vittella, as mortality occurred within 72 h; whereas this level of mortality was recorded in C. somatis, C. gibbosa and M. vitrata within 144 h. No mortality was observed in the control treatment. Multiplication of S. mushtaqi and the yield of infective juveniles (IJs) on these insects was the highest (0.94 × 105 IJs/cadaver) from N. viriduala, followed by S. litura (0.76 × 105 IJs/cadaver), L. boeticus as also C. gibbosa (0.31 × 105 IJs/cadaver) and M. vitrata (0.20 × 105 IJs/cadaver). Very poor populations of IJs were found from A. moorei (0.15 × 105 IJs/cadaver) and C. somatics (0.01 × 105 IJs/cadaver). No multiplication of IJs was found from the cadaver of E. vittella. This opens a new hope of utilising S. mushtaqi in the insect pests management programme.  相似文献   

18.
In vitro studies were carried out on the diamondback moth, Plutella xylostella larvae using an insect entomopathogenic nematode isolate, Steinernema carpocapsae obtained from the Koppert company, the Netherlands. Larvae of P. xylostella were collected from cabbage farms around Mashhad city of Iran. During the study, the responses of larvae at 25?°C for three periods of 24, 48 and 72?h with different concentrations of 0, 5, 10, 20, 40, 80, 160 and 320 third instar larvae of nematode (infective stage?=?IJs) per insect into 10?cm Petri dishes containing filter paper soaked with 1?ml of nematodes suspension were compared. Maximum mortality caused by S. carpocapsae nematode was 88% at 24?h, and it was 100% at 48 and 72 h. With increasing nematode population level and exposure time (ET in hour), mortality of P. xylostella larvae was increased. Based on probit analysis, LC50 values of S. carpocapsae nematode in three test periods were 45.61, 12.02 and 40.80 IJs per insect, respectively. Initial ANOVA was performed for S. carpocapsae nematode. The effect of both nematode population levels (IJ) and ET on third instar larvae of the diamondback moth, P. xylostella and interaction between IJ and ET were significant. In general, it is recommended to apply this nematode in suitable condition for controlling diamondback moth.  相似文献   

19.
The impact of the nematode-parasitic fungus Hirsutella rhossiliensis on the effectiveness of Steinernema carpocapsae, S. glaseri, and Heterorhabditis bacteriophora against Galleria mellonella larvae was assessed in the laboratory. The presence of Hirsutella conidia on the third-stage (J3) cuticle of S. carpocapsae and H. bacteriophora interfered with infection of insect larvae. Conidia on the J3 cuticle of S. glaseri and on the ensheathing second-stage cuticle of H. bacteriophora did not reduce the nematodes'' ability to infect larvae. The LD₅₀ values for S. carpocapsae, S. glaseri, and H. bacteriophora in sand containing H. rhossiliensis were not different from those in sterilized sand when Galleria larvae were added at the same time as the nematodes. However, when Galleria larvae were added 3 days after the nematodes, the LD₅₀ of S. glaseri was higher in Hirsutella-infested sand than in sterilized sand, whereas the LD₅₀ of H. bacteriophora was the same in infested and sterilized sand. Although the LD₅₀ of S. carpocapsae was much higher in Hirsutella-infested sand than in sterilized sand, the data were too variable to detect a significant difference. These data suggest that H. bacteriophora may be more effective than Steinernema species at reducing insect pests in habitats with abundant nematode-parasitic fungi.  相似文献   

20.
《Journal of Asia》2022,25(1):101874
Virulence and invasion efficiency of the three entomopathogenic nematodes, Heterorhabditis bacteriophora, Steinernema carpocapsae and S. feltiae against the potato tuber moth (PTM), Phthorimaea operculella was evaluated. Also evaluated were the sex ratio of Steinernema spp. and host stages to determine if 1) the developmental stage of the host affects sex ratio of nematodes; 2) infective juveniles (IJs) concentration affects sex ratio in host developmental stages and 3) the establishment of IJs is affected by developmental stages of host. The PTM pre-pupa and pupa were exposed to IJs in filter substrate petri dish bioassays. By increasing the IJs concentrations, the number of established Steinernema spp. in both PTM stages increased and only decreased at the highest concentration. No reduction in established nematode numbers at the highest concentration was observed for H. bacteriophora. Sex ratio of S. carpocapsae in pre-pupa was affected by IJ concentration. PTM was more susceptible to Steinernema spp. than H. bacteriophora. Pre-pupa were more susceptible to S. feltiae but S. carpocapsae recorded as the most virulent EPN on pupa. Invasion efficiencies were similar for Steinernema and considerably higher than for H. bacteriophora. Despite a higher invasion efficiency of Steinernema into pupae, mortality was lower compared to pre-pupa No correlation was recorded between the invasion efficiencies of the EPNs and mortalities of PTM. The results showed that the invasion efficiency is not appropriate criterion to reflect the virulence of studied EPNs. Compared to H. bacteriophora both tested Steinernema spp. were good candidates for further studies as biocontrol agents of PTM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号